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STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 e. Olympia, Washington 98504-8711 e (206) 459-6000

August 1, 1992

TO: Interested Parties

FROM: Carol L. F1eskeé¥%%;ogram Manager
Toxics Cleanup Program

Toxics Cleanup Program

SUBJECT: Statistical Guidance for Ecology Site Managers

Attached is the August 1992 edition of Washington State Department of Ecology's
(Ecology) "Statistical Guidance for Ecology Site Managers." The document pro-
vides guidance on statistical issues relating to the investigation and cleanup of
soil- and groundwater contamination under the Model Toxics Control Act Cleanup
Regulation. It is not intended for use at sites where routine petroleum leaking
underground storage tank (LUST) cleanups are undertaken using Ecology's Guidance
for Remediation of Releases from Underground Storage Tanks, which includes
statistical guidance in an appendix.

Routine statistical procedures are provided in this Guidance that should be
applicable to most sites. For statistical situations where site-specific
decisions should be made, the Guidance provides Ecology staff with relevant
information, but does not establish standard procedures or criteria. Conse-
quently, some statistical methods and procedures are discussed that should not
be used without site-specific approval of Ecology. Consult Section 1.2 (Using
the Guidance Document) for more information. "Site-specific approval of Ecology"
refers only to remedial actions conducted or ordered by Ecology, or to cleanups
agreed to by Ecology in an agreed order or decree governing remedial actions ‘at
the site. Ecology will respond to questions relating to the Guidance from
persons conducting independent cleanups if staff resources permit. However, it
may be helpful to consult a statistician regarding sections of the Guidance that
provide for site-specific decisions.

Important features of this Guidance include the default assumption of a lognormal
distribution for soil and groundwater sampling data. This assumption was adopted
on the recommendation of the Model Toxics Control Act Science Advisory Board.

For data that do not follow a lognormal distribution, the Guidance provides
statistical methods for rejecting the default assumption. Readers should also
note that the Guidance provides new procedures relating to the use of background
data in establishing a cleanup level. The technical basis for these procedures
is explained in the document.
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Ecology invites written comments from interested persons regarding this Guidance
for consideration in making future revisions. Ecology's experiences in applying
the Guidance to specific sites will also be considered in evaluating the need for
revisions. More rapid updates will be provided through Guidance Supplements.
These may be issued, for example, to cover a subject that is not presently
addressed; to clarify a section that users find vague or ambiguous; or to replace
a section in the current document. '

Written comments on this document should be addressed to:

Nigel Blakley
Department of Ecology
Toxics Cleanup Program
P.0. Box 47600
Olympia, WA 98504-7600

Requests to be placed on the hailing list for Guidance Supplements and other
Guidance mailings should be addressed to:

Sherrie Hanson
Department of Ecology
Toxics Cleanup Program
Statistical Guidance
P.0. Box 47600
Olympia, WA 98504-7600
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in litigation with the State of Washington. Ecology reserves the right to act at variance with
this Guidance at any time.
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1. INTRODUCTION

11 PURPOSE AND PHILOSOPHY OF THE STATISTICAL GUIDANCE
DOCUMENT

This document is intended to provide Model Toxics Control Act (MTCA) site managers
with guidance for sampling and analyzing groundwater and soils to develop background-based
cleanup standards, where appropriate, and to determine whether a site or exposure unit meets
cleanup standards. The cleanup standard may be listed in the regulation or established under
applicable state and federal laws, or it may be set at natural background levels. Cleanup
standards may also be established at calculated risk-equivalent concentrations.

We can never know the actual contaminant concentrations at a site unless we sample all the
soil or groundwater present. Obviously, this is not feasible. However, we can draw conclusions
about the site by sampling and statistically analyzing the results. We can estimate the parameters
of the true contaminant concentration distribution based on the sample parameters. For example,
we estimate the true average concentration at the site (u) with the average of the samples (X).
This will always involve some uncertainty, because we can never be certain that the samples
represent the true contaminant concentrations at the site. Suppose there is one small area of a
site that is highly contaminated, but no samples are taken in that area. The conclusion, based
on the samples, might be that the site is clean (uncontaminated). In this case, the samples are
not representative of the true contaminant concentrations at a site because they do not reflect the
highly contaminated area. Alternatively, suppose all the samples at the site were taken in the
small, contaminated area. A conclusion might be reached that the site is very contaminated,
when, in fact, only a small area is contaminated and most of the site is clean.

Two methods exist for handling the uncertainty in statistically representing contaminant
concentrations at a site. One is to reduce the uncertainty by improving sampling design to
include more samples—or more representative samples—because in general, the more samples
that are collected, the more certain we can be that we are representing true site conditions.
However, there will always be some uncertainty associated with the results. Alternatively, the
uncertainty can be quantified by assigning confidence intervals (see Section 2.1.9) to the
statistical parameters describing the samples [e.g., the mean (see Section 2.1.1)]. These
intervals describe how confident we are that the true parameters lie within a range of values.
For example, if the mean of a particular data set is 10, we could say we are 95 percent confident
that the true mean of the data set lies between 3 and 16. This means that 5 percent of the time
the true mean lies outside of this range of values.

Statistical methods presented in this manual are designed to permit site managers to make
decisions about contamination levels at an entire site, or within an exposure unit, based on a
limited number of samples. These methods are designed to take into account the uncertainty
inherent in this process. MTCA provides for "other statistical methods" than those discussed



in the rule. This document describes some other methods that may be applicable to a specific
sitnation. Other generally acceptable statistical methods exist for soil (EPA 1989a) and
groundwater (EPA 1988). References in the Bibliography provide additional statistical data
evaluation methods (e.g., Gilbert 1987) which may be acceptable if consistent with MTCA
requirements (e.g., see Section 2.1.6).

The philosophy behind the statistical procedures in MTCA includes the following principles:

1. Tests of compliance monitoring data should be such that a low frequency of
relatively small-magnitude exceedances of the cleanup standard are allowable
within the rules without triggering mandatory cleanup criteria, but that the
frequency and magnitude of such exceedances should be limited.

2. Inthose cases where cleanup standards are based on background, the background
distributions should be such that clean (i.e., uncontaminated) sites or exposure
units have a high probability of being recognized as such.

An effort was made to make this document as applicable as possible to actual situations
faced at sites. However, it is not possible to address every case that may occur in application
to real-world situations. If a statistical interpretation of site data appears to be more complex
than the examples provided in this document, it is recommended that the assistance of the
Washington State Department of Ecology (Ecology) or a statistician be sought.

12 USING THE GUIDANCE DOCUMENT
Users other than Ecology staff:

Although this guidance should be used by all parties involved in the investigation and
cleanup of hazardous waste sites under MTCA, the document was primarily written to assist
Ecology staff. Thus while the guidance provides statistical procedures which may be used
routinely at most sites, the document also provides information for Ecology staff on alternative
approaches available under special circumstances (e.g. contaminant data are neither lognormally
or normally distributed). Decisions regarding the use of these alternatives are made by
Ecology on a site-specific basis and therefore require consultation with the department.

Information on alternative approaches requiring Ecology’s approval is identified in this
document in one of two ways. First, section headings are marked "Requires consultation with
Ecology" where information is provided to Ecology staff for their use in making site-specific
decisions. For example, the nonparametric method for estimating percentiles (Section 2.1.2.3)
is only acceptable if Ecology has agreed to its use for a particular data set. Second, in other
sections it is clearly indicated where consultation with Ecology is required before a specific
statistical decision may be made (e.g. Section 4.3.5).

The requirement to consult with Ecology regarding sections of this guidance refers only to
remedial actions conducted or ordered by Ecology, or to cleanups agreed to by Ecology in an



agreed order or decree governing remedial actions at the site. The department will respond to
questions relating to the guidance from persons conducting independent cleanups if staff
resources permit. However, it may be helpful to consult a statistician regarding sections of the
guidance which provide for site-specific decisions.

Overview for all users:

Basic statistical parameters and definitions, and methods for calculating these parameters,
are described in Section 2. Section 2 should be read in its entirety by those unfamiliar with
statistics, or it can be used as a reference and reminder for those more familiar with the
material. However, guidance on distributions (2.1.4.2 - 2.1.4.3) is of key importance and
should be read by all users of this document. Other important guidance also occurs at the end
of this section (2.2 - 2.3). Section 3 describes issues to be considered in sampling. This is an
extensive topic and will be addressed more fully in the future. Thus, this section is reserved in
the current version of the guidance document. Section 4 describes the methods for answering
the question, "What is the cleanup standard, and how is it related to background concentra-
tions?" Both soils and groundwater are discussed. Section 5 describes the methodology for
answering the question, "Does the site or exposure unit meet the identified cleanup standards?"
Section 6 (Geostatistics) is reserved at this time. Section 7 contains general statistical references
that provide additional information on topics covered in this guidance document. Numbered
examples, mentioned throughout the text, are found in Section 8. Tables A-1 through A-7,
along with other relevant material, are included in Appendix A.

Important terms are in bold face where they are introduced for the first time. If applicable,
this will be followed by a reference to the section where this concept is discussed. '



2. GENERAL STATISTICAL ISSUES

2.1  BASIC DEFINITIONS

The objective of this section is to describe basic statistical concepts and to act as a
framework on which data interpretation and decisions may be based.

2.1.1 Mean

2.1.1.1 Arithmetic Mean (Example 1)—The arithmetic mean is the same as the average
value of a data set. The mean value may not equal any of the data values. The mean, X, may
be calculated by summing the values in a data set and dividing by the total number of values in
the set:

where

x; = values of samples

n number of samples.

The mean of the sampled values, X, is likely to differ from the mean of the true population (see
Section 2.1.4), p, which could only be obtained by sampling all of the soils or groundwater at
the site. Thus, we try to estimate the true mean, based on the sampled values. The mean of
the sampled values may be influenced by outlier values (see Section 2.3) or by unrepresentative
sampling of values within the distribution, which may give a biased view of the true overall
statistical population. In the case of contaminant concentrations, samples below the detection
limit must be handled carefully, so as not to bias the mean. Below-detection-limit data (known
as censored data sets) are discussed in Section 2.2. In general, the arithmetic mean should be
used for the statistical methods described in this document.

2.1.1.2 Geometric Mean (Example 2)—Environmental data are often analyzed using the
geometric mean rather than the arithmetic mean, particularly for lognoermal or other skewed data
sets (discussed in Section 2.1.4.2). In this document, the mean is the arithmetic mean, unless
it is specified otherwise. However, the geometric mean is mentioned here because it is often
encountered in technical literature relating to lognormally distributed data. '



The geometric mean is the nth root of the product of n numbers. For examples, the
geometric mean of 6, 10, and 20 is the cube root of 6 x 10 x 20, or 10.63. In practlce the
geometric mean may be estimated by the following method:

1. Transform the data by taking the natural logarithm (base €) of each value. Note
that other transformations are acceptable (e.g., base 10 logarithms), but in this
document the natural logarithm will be used. Most calculators have both
logarithms, so care should be taken that the natural logarithm is used. Note that
it is possible and acceptable to obtain negative values after transforming the data.

y; = 1n x,

2. Calculate the arithmetic mean of the transformed values:

(yl+y2+ e +yn)

y= o

where

y; = lognormally transformed sample values
n - = number of samples.

3. The sample geometric mean (for a base e logarithmic transformation only) is then:

e

2.1.2 Median and Other Percentiles

Percentiles, also known as quantiles, describe a location in the distribution of data. For
example, the 50th percentile is the value at which half the data lie above the value, and half lie
below. For the 90th percentile value, 10 percent of the data lie above the value and 90 percent
lie below. The 10th percentile is the point at which 90 percent of the data lie above the point,
and 10 percent below.

2.1.2.1 Estimating the Median (Examples 3 and 4)—The median, like the mean, is a
statistic that describes typical (central) values of the data set. The median is the 50th percentile
of the data set: half the data values lie above the median and half below. As a measure of
central tendency of the data set, the median is not influenced by extreme (very high or very low)



median, but 90 percent on the cumulative percent scale is used. This method is
recommended for censored data sets.

m  If the data are normally distributed, calculate the sample mean (X) and the sample
standard deviation (s) (described in Section 2.1.3 below). The 90th percentile is
approximated by:

Xg0 = 90th percentile = X + (1.28)(s)

This method is preferable for uncensored data sets. (Note: again, the value of 1.28
is Zy,, obtained from Table A-6).

‘ 2.12.3 General Nonparametric Method for Estimating the p* Percentile

(Example 5)—[Requires consultation with Ecology.]. If the data are neither normally nor
lognormally distributed, a nonparametric method (Section 2.1.5), which does not require the
data to fit any particular distribution, should be used. A normal or lognormal distribution should
not be assumed if the statistical test indicates significant departure from either of these
distributions. If a normal or lognormal distribution cannot be rejected, the best-fit distribution
should be assumed, and the methods described in Section 2.1.2.2 should be used rather than a
nonparametric method. A nonparametric (distribution free) method can be used to estimate any
percentile, X, and is shown in Example 5. ‘

1. Sort the data from smallest to largest, and rank them from 1 to n, where n is the
total number of data points in the data set (sample size). Data points with the
same value should be ordered consecutively, and each point assigned its own rank.

2. Estimate v .
V=100 (n+1)

where v = the rank of the p" percentile data.

3. Ifvis an integer, then the p™ percentile is simply the v* ranked datum in the data
set. :

4. If v is not an integer, then the p™ percentile must be linearly interpolated between
the two closest order statistics (see Example 5).

The nonparametric estimation of the median (50th percentile) value is seen to be a special case
of this general method for estimating percgntiles.



values, as is the mean, but for this same reason, it also does not utilize all the information
contained in the data set. The median can be estimated directly from the sample data using the
following method:

1. Sort the data from smallest to largest, and rank them from 1 to n, where n is the
total number of data points in the data set (sample size). If there is more than one
data point with the same value (i.e., a "tie"), order the data points consecutively,
and give each its own rank. For example, if the S5th and 6th lowest data points
are both 28, assign one 28 a rank of 5 and the other a rank of 6. This will not
affect the calculation of the median.

2. If the sample size, n, is odd: the sample median estimate is the (n+1)/2th value.
For example, if the sample size is 19, the sample median is the (19+1)/2 = 10th
value. ~

3. If the sample size, n, is even: the sample median estimate is the average of the
n/2th and the (n+2)/2th values. For example, if the sample size is 20, the sample
median estimate is the average of the 20/2 = 10th and the [(20+2)/2] = 11th
values.

This method is illustrated in Example 3.

Alternatively, the median can be estimated from a probability plot. If the data are
normally distributed (Section 2.1.4.1), plot the points on normal probability paper (included in
Appendix A) and fit a line by eye to the points on a probability plot. Some statistical computer
software packages can do this. Use the line to estimate the value corresponding to 50 percent
on the cumulative percent scale. This value is the median. This method is demonstrated in
Example 4. If the data are lognormally distributed, use a probability plot of the log-transformed
data. Note that for the log.-transformed data, the value corresponding to 50 percent is the log
of the median; you will have to convert it by taking the exponent (base e) of the transformed
values. Alternatively, plot the points on log-probability paper and read off the median directly.

2.1.2.2 Estimating the 90th Percentile— Several methods are available for estimating the
90th percentile of a data set: '

m  If the data are lognormally distributed, calculate X and s for the log,-transformed
data. Then calculate M, where M = X + (1.28)(s). The 90th percentile can then
be approximated by:

X5 = eM

(Note: the value of 1.28 is Z,,, which was obtained from Table A-6).

®m  If the data are normally distributed, the 90th percentile X, may be estimated
from a probability plot. The procedure is basically the same as that. for the



2.13 Standard Deviation, Variance (Example 6), and Coefficient of Variation

The standard deviation of the population, ¢, represents the spread of the population around
the mean. The standard deviation of the sampling data, s, which is an estimator of o, can be
calculated as the positive square root of the sample variance, s?>, which is defined by:

Y(x,-%)?
—5 T

s? =

Calculation of s? and s is demonstrated in Example 6.

* The coefficient of variation (CV), which is affected by the degree of skew (Sectlon 2.1.4.2)
is calculated as the standard deviation divided by the mean:

CV = s/x

Most scientific calculators will calculate standard deviations. However, it is important to
note whether the calculator divides by n or n—1 when performing the calculation. Some
calculators will allow you to select the divisor. In general, the n—1 divisor should be used for
calculating the standard deviation of a data set.

Note: do net use the standard deviation and mean of the sampling data when calculating
the CV for compliance decisions (see Sections 4.3.3-4.3.5). Instead, use the standard deviation
and mean of the best-fit distribution (Supplement S-5). For example, the CV of 3.65 calculated
in Example 12 is for the best-fit lognormal distribution, not the raw data.

214 Probability Distribution

The probability distribution is a plot of the probability of a variable attaining a value. It
is a curve, usually continuous, that shows all possible values and describes the true distribution
of the population. In order to be valid, many statistical tests require that the data approximate
a normal (or Gaussian) probability distribution (e.g., bell-shaped curve). For this document,
a population can be thought of as the entire set of contaminant concentrations that could be
measured at a site if all the soil or groundwater at the site could be sampled. Thus, it is not
possible to know the true probability distribution of a population unless we sample all the soil
or groundwater at a site, which, of course, is not feasible. Instead, we estimate the probability
distribution based on only a sample of the population. The sampled data can then be plotted on
a histogram. A histogram is a bar plot that shows ranges of discrete measured values, and the
frequency with which these values occur in a data set. The probability distribution of the overall
population can be inferred from the histogram (Figure 1).

2.141 Normal Distribution (Example 7)— A normally distributed population will form
the familiar "bell-shaped," symmetric curve (Figure 2). Many statistical tests require that data
be normally distributed. Several methods can be used to determine whether data follow a
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Figure 3. Data from Example 1 plotted on a probability plot. These data
appear to be normally distributed.
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normal distribution. The data for each contaminant at a site must be tested individually for
normality.

Normality testing using probability plot—The simplest approach is to graph the data on a
probability plot. Statistical computer software packages such as STATGRAPHICS® or
SYSTAT® will do this for you; otherwise you will need probability plot graph paper if you do
it by hand (linear [normal] probability plot paper is included in the appendix to this document).
The measured data should be plotted on a normal probability plot. Then, a line should be
overlaid that describes the data expected from a normal distribution with the same mean and
variance as the measured data (Figure 3). The measured data points will not fall exactly on the
line, but if they lie approximately on the line, the data are normally distributed. This is a
‘somewhat subjective test. Several references are available that describe the development of
‘normal probability plots (Neter and Wasserman 1974; Shapiro 1980).

Normality testing using the W test—The W test (Shapiro and Wilk 1965) can be used to test
whether the data differ significantly from a normal distribution, but cannot be used to determine
whether the data are normally distributed. If the W test does not show that the data differ from
normal, a normal distribution can be assumed.

The W test, as described below, is appropriate for fewer than 50 samples. The W test is
recommended by the U.S. Environmental Protection Agency (U.S. EPA 1986) because it
performs well for small sample sizes (which are likely at MTCA sites). For larger sample sizes,
D’ Agostino’s test should be used (D’Agostino 1971). Both tests are described in Gilbert (1987).

The W method tests the hypothesis: The data have been drawn from a normally distributed
population. This is the "null hypothesis" for the test (the null hypothesis is discussed in Section
2.1.6). The alternative is that the underlying population is not normally distributed. The
method for performing the W test is as follows (Gilbert 1987):

‘1. Compute the denominator, d, of the W test statistic. This is done by calculating
the mean of the data set, X, and subtracting the mean from each of the-dataaalues
(some resulting values will be negative). The difference between the mean and
each value should be squared, and the results should be summed. This is
expressed by the following equation:

n
d=Y (x-%?
1=1

where

n = the total number of samples

X; = the individual data values.
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2. Order the data from smallest to largest, and assign a rank to each value.

3. Compute r where

r.=n/2 _if n is even
and
r = (n-1)/2 if nis odd.

4. Use Table A-1 for the number of samples n to determine coefficients a,, a,, ...
a,.

5. Next compute W using the equation:

1 r
W= (-a)[ ]glai(xln-m] - xy)]?

where

Xg = the value of i" ranked data
a; = coefficients calculated from Table A-1.

6. Using Table A-2, find the value of W for a particular significance level, o, and
sample size, n. A significance level of 0.05 (confidence level of 95 percent) is
consistent with the significance level required by the regulations for other
statistical tests. If the value for W calculated in Step 5 above is less than the
value in Table A-2, the null hypothesis—that the population is normally distribut-
ed—should be rejected. If the W from Step 5 is greater than the tabled value for
W, we can assume that the data are normally distributed. Example 7 demon-
strates an application of the W test to the data in Example 4. Detailed instructions
for examining data for departures from normality using the W test are given in
Worksheet W-1a.

Normality testing by alternative methods—[Requires consultation with Ecology.]. Alternative-
ly, the chi-square (x*) goodness-of-fit test at some specified significance level (e.g., 0.01) can
be applied to test the normality of the data. The chi-square test is used to quantitatively evaluate
the difference between the observed and expected frequency value for each variable. This test
can be applied using computer software such as STATGRAPHICS®. Another available
procedure, the nonparametric Kolmogorov-Smirnov test (Conover 1980), is considered to be
more powerful than the chi-square test for evaluating the fit of a hypothesized distribution,
particularly for small sample sizes (e.g., n<20). Several other methods for testing the
normality of a data set are described in Shapiro (1980). Alternatives to the W test should not
be used unless there is a valid statistical reason for doing so.
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2142 Lognormal Distribution (Example 8)—A probability distribution is symmetric
if a vertical line can be drawn through the distribution such that the two sides are mirror images
of each other (Figure 2). If a distribution is not symmetric with respect to the vertical line, it
is skewed. Distributions may be skewed to the right or left. A distribution skewed to the left
(also known as negatively skewed) will have a long tail on the left and a shorter tail on the right,
while distributions skewed to the right (positively skewed) have a long tail on the right
(Figure 4) and a greater proportion of the population on the left. Water quality data, and other
environmental data, are often positively (sometimes highly) skewed (Gilliom and Helsel 1986;
Gilbert 1987; Helsel 1990).

In this document, the default assumption is that the data are lognormally distributed.
‘Data should first be tested to determine if a lognormal distribution is appropriate. If there is
evidence that the data are normally distributed (e.g., visual fit or statistical test), or if the data
do not appear to be lognormally distributed, they should be tested for normality. Rejection or
acceptance of a lognormal or normal distribution can be made visually, but if there is any doubt,
a statistical test should be performed to eliminate the subjectiveness of the visual methods. If
both normal and lognormal distributions are rejected, the advice in the guidance document
should be followed.

To test the assumption of lognormality, the data should be logarithmically transformed and
tested for normality as described in Section 2.1.4.1. This involves calculating the natural
logarithm (base e) of each of the data points. If the transformed data appear to be normally
distributed (using the W test or D’Agostino’s test) when they have been logarithmically
transformed, the data set can be assumed to be lognormally distributed. Many of the statistical
estimation methods and tests described in the following sections may then be performed on the
transformed data. Detailed instructions for testing the assumption of lognormality using the W
test are provided in Worksheet W-1. Supplement S-3 provides. an overview of the procedure
to follow in making a decision on the distribution of site or background data.

A histogram of a data set drawn from a lognormally distributed population is shown in
Figure 5a. This data set was logarithmically transformed, and the transformed data appear to
be normally distributed (Figure 5b). Logarithmic transformations are demonstrated in
Example 8. In Figure 6, an untransformed data set is plotted on a probability plot, and the
points do not plot on a straight line. However, the plotted, logarithmically transformed data
approximate a straight line (Figure 7), indicating that the data set is approximately lognormally
distributed (log [lognormal] probability plotting paper is included in the Appendix of this
document). A comparison of normal and lognormal distributions is shown in Figure 8.

Lognormally transformed data should never be used to obtain summary statistics (e.g.,
mean, standard deviation) for the untransformed data, due to the transformation bias inherent
in determining summary statistics for a transformed data set and then transforming the data back
to original units. Thus, the mean of the log-transformed data is not the same as the logarithm
of the mean of the raw (untransformed) data. However, transformation of percentiles (e.g., 90th
percentile, median) does not exhibit this bias. In other words, the 90th percentile of the log-
transformed ‘data will be the same as the logarithm of the 90th percentile of the raw (untrans-
formed) data.

14
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Figure 6. Soil lead data plotted bn a probability plot. These data do not appear
to be normally distributed (do not fall on the straight line).
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Fugure 7. Loge-transformed data from Figure 6 plotted on a probablhty plot.

The log-transformed data appear to be normally distributed, indicating

that the original data are lognormally distributed.
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2143 Other Distributions—For small data sets (e.g., n < 20), it may not be possible
to "reject” either the normal or lognormal distribution; both distributions may appear to fit the
data. In this case, the lognormal distribution should be used. Alternatively, additional samples
can be taken to better determine the distribution. This is demonstrated in Figure 9. Normal and
lognormal distributions are sufficient to model many real-world statistical situations. However,
some data sets may be neither normally nor lognormally distributed. Several other distributions
have been used to model environmental data, including Weibull, gamma, and beta distributions.
The three-parameter Weibull distribution can assume a wide variety of shapes and can be used
to model both right and left-skewed data. These distributions are discussed briefly in Gilbert
(1987), and are mentioned here because they may be encountered in statistical texts. However,
for the statistical methods described in this document, if the data set does not appear to be
normally or lognormally distributed, a nonparametric (distribution-free) statistical method should
be used, if available and appropriate.

2.1.5 Parametric vs. Nonparametric Methods

Parametric estimation methods and tests require that the data be drawn from a population
with a specific probability distribution (e.g., normal). When the distributional assumptions hold,
parametric tests are usually more powerful than nonparametric (distribution-free) tests, although
this is dependent on the type of test performed. However, parametric tests can lose statistical
power or introduce bias if their distributional assumptions are incorrect. In this case, statistical
power can be thought of as the ability of a method to detect site contamination if it is present,
and to decide that remediation is unnecessary at a clean site. The loss of statistical power or
introduction of bias when distributional assumptions are not met can render parametric statistical
procedures ineffective in reaching decisions on site contamination.

Nonparametric estimation methods and tests, also called "distribution-free," do not require
that the data be drawn from a specific distribution (e.g., normal). These methods and tests are
valid for all data distributions. However, because parametric methods are generally more
powerful if distributional assumptions hold, parametric methods are preferred unless data deviate -
significantly from normal and lognormal distributions. Thus, in order to use a nonparametric
method, the distributional assumptions must be tested, and both the normal and lognormal
distributions rejected.

2.1.6 Null Hypothesis

In MTCA (WAC 173-340-200), the null hypothesis (the "working assumption") is that
contaminant concentrations at the site exceed the cleanup level (unless the cleanup level is based
on background concentrations). The alternative is that they do not exceed the cleanup level.
Since there is only one possibility for the alternative hypothesis, the appropriate statistical
analysis is known as a one-tailed test. If there were two possibilities for alternative hypotheses,
the test would be a two-tailed test.

The MTCA null hypothesis ("site exceeds cleanup level") is environmentally conservative
but creates some statistical problems. This is because the conventional null hypothesis in
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statistics is the "no difference" hypothesis ("site is not different from cleanup level"). Most
statistical tests are designed to test the "no difference" null hypothesis, and any introductory
statistical textbook will be written from this perspective. Consequently, many commonly used
statistical tests, such as the r-test or analysis of variance (ANOVA), are generally inappropriate
for MTCA cleanups and are therefore not described in MTCA or this document. In addition,
much of the information in statistics texts is also inappropriate. Statistical guidance published
for the Resource Conservation and Recovery Act (RCRA) program is generally inapplicable to
MTCA because the "no difference” null hypothesis is used in statistical analysis for RCRA
facilities. However, U.S. EPA (1988, 1989a) has published statistical guidance for Superfund
cleanups that is based on the same null hypothesis as MTCA, and may therefore be used for
statistical analysis of data from MTCA sites. If in doubt, consult these sources or a statistician.

2.1.7 Type I and Type II Errors

Two types of errors can occur when a statistical test is applied to test a null hypothesis.

If a statistical test shows that the null hypothesis is very unlikely, then we can accept the
alternative, which in this case is that the site is clean. Since we are dealing with probabilities
and not certainties in statistics, we could be wrong. If we are wrong—we assume that the site
is clean and it is in fact contaminated—we have committed a Type I error. A Type I error
means that the null hypothesis ("site exceeds cleanup level") is incorrectly rejected; a site that
is actually contaminated will not be cleaned up. Statistics can’t prevent Type I errors, but it
* does allow us to control the likelihood of committing such an error. In general, this likelihood
is set at 0.05 (5 percent, or 1 time in 20) in the regulation [e.g., WAC 173-340-720(8)(e) ()]
This defines what we mean by the null hypothesis being "very unlikely" and is an attempt to
minimize mistakes. The statistical test must show that the chances of the null hypothesis being
right are no greater than 0.05, or 1 in 20 in order to reject the null hypothesis.

The probabilistic nature of statistical decisions can also lead to a Type II error. When a
Type II error occurs, the null hypothesis ("site exceeds cleanup levels") is incorrectly accepted.
A statistical test on a particular data set may indicate that the null hypothesis is not sufficiently
unlikely to justify its being rejected (i.e., it is more likely than 1 in 20), and the null hypothesis
is therefore accepted. In this case, however, if the site actually is clean, we have committed a
Type I error. If a Type II error occurs, cleanup will be required on a site that actually doesn’t
need it. In general, the likelihood of committing a Type II error can be reduced by collecting
more samples or by using a more powerful statistical test. When deciding the number of
samples needed at a site, it is worth considering that a Type II error may be a more expensive
mistake than collecting too many samples. These issues are discussed further in the EPA
guidance documents cited above.

2.1.8 Estimation Procedures vs. Statistical Tests

The procedures described in Sections 2.1.1-2.1.3 above are procedures for estimating
summary statistics for the underlying population. Summary statistics include the mean, standard
deviation, and median or other percentiles. Summary statistics describe basic facets of the data
but do not provide interpretive or decision-making power.

23



In many cases, the purpose of statistical analysis is not only to estimate the statistical
parameters for the underlying population,. but also to make some conclusion about those data.
Statistical tests have been developed for this purpose. In its simplest form, a statistical test deals
with hypotheses and estimating the likelihood that they are correct. The following sections
describe methods to reach conclusions about the site contaminant concentration data.

The concépts behind a statistical test of a null hypothesis will be illustrated by an example:

Samples are collected from two orchard fields to measure soil arsenic levels. There
are two hypotheses. One is that the soil arsenic level is the same in both fields. The
alternative hypothesis is that the soil arsenic levels are different. Normally in statistics
the first hypothesis ("no difference") is the null hypothesis. A statistical test can then
be used to estimate the likelihood that the null hypothesis is correct. If it is "very
unlikely," then the alternative, that the orchard fields are different, is probably correct.
This example illustrates several important points. First, we can only test the null
hypothesis, we cannot prove it. Second, statistics doesn’t provide certainty (although
it does let you specify what you mean by "very unlikely"). A more subtle point is that
if the null hypothesis is probably wrong, and there is a difference between the fields,
then there are actually two possibilities: field #1 has higher arsenic levels than field
#2, or vice versa (either way, the fields are different). Where the alternative to the
null hypothesis contains two possibilities, the appropriate analysis is a two-tailed
statistical test.

If field #1 had been sprayed with an arsenic pesticide, there is good reason to set up
different hypotheses. Now the alternative hypothesis could be that the soil in field #1
has more arsenic than the soil in field #2, and the null hypothesis is that it doesn’t.
If a statistical test shows that the null hypothesis is very unlikely, there is only one
possibility left: arsenic levels in field #1 are higher than in field #2. Here the
appropriate analysis is a one-tailed statistical test.

In general, estimation methods are not influenced by the null hypothesis, whereas statistical
tests are. The procedures discussed in this document are estimation procedures, and therefore
are not influenced by the null hypothesis to be tested (the null hypothesis does not influence the
confidence interval or tolerance interval "tests" described in this document). However,
"alternate statistical procedures” are allowed by MTCA. If methods other than those described
in the regulations are used, they must be consistent with the MTCA null hypothesis that the site
exceeds the cleanup level. As mentioned above, many of the common statistical tests (e.g.,
t-test) are not appropriate for this null hypothesis.

2.19 Confidence Interval
Estimation procedures do not provide population parameters (e.g., mean) with absolute

certainty. The confidence interval for statistical parameters can be used to describe the
likelihood that the parameters will fall within a specific interval.
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Suppose that a specific number of samples are taken at a site, the 100(1—«) percent
confidence interval is calculated, and this process is repeated many times. The 100(1—c)
percent confidence interval (CI) on a percentile (e.g., the median) means that 100(1 —«) percent
of those intervals will include the percentile. The level of significance, «, is calculated from
the selected CI by the following equation:

o =1 — CI/100.

Thus, for a 95-percent confidence interval, « is 0.05. For a significance level o = 0.05, the
95-percent CI on the median means that the true population median will be within the interval
95 percent of the time. : :

2.1.10 Tolerance Interval

A tolerance interval is based on determining the confidence interval on a fixed proportion
of the measurements, rather than on a particular parameter (e.g., the median). A confidence
interval describes the likelihood that the particular parameter (e.g., the median) will fall within
the interval. The tolerance interval describes the likelihood that a portion of the measurements
(e.g., 95 percent) will fall within a specific interval. For example, the value obtained from the
upper 95-percent tolerance interval around the 90th percentile means that we are 95 percent
confident that at least 90 percent of the distribution is less than the value.

The tolerance limits are given by

X + ks

The k value is essentially a factor that reflects the percentile of interest and the sample size. It
increases the standard deviation by an amount related to the number of samples and the
confidence level desired.

The tolerance interval approach assumes that the sampled data are drawn from a normally
distributed population. This approach is more sensitive to the normality assumption than the
confidence interval approach. It should not be used for data where a statistical test indicates that
the normal distribution is inappropriate. For lognormally distributed data, see Section 5.2.2.2.
Methods for data that are neither normally or lognormally distributed are described in Sections
5.2.2.3and 5.2.2.4. ’

2.2 SAMPLES WITH VALUES BELOW THE DETECTION LIMIT OR PRACTICAL
QUANTITATION LIMIT

Environmental data sets commonly contain data that are reported as "less than" the detection
limit, or "not detected." This is particularly common for contaminants such as volatile organics,
which are not normally present in the environment. In addition, due to conditions such as
matrix interference, a laboratory measurement may be above the method detection limit, but
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below the practical quantitation limit (PQL), and these measurements will commonly be reported
as "less than" the PQL. Data sets that contain below-detection-limit (BDL) or below-PQL data
are known as censored data sets. Censored data sets present difficulties for many standard
estimation procedures and statistical tests. For example, the mean cannot be estimated by the
method described in Section 2.1.1 unless numerical values are assigned to the BDL or below-
PQL data. Thus, the values assigned to BDL and below-PQL data could have a significant
impact on the calculated mean for the data set. Censored data are less influential, however,
when we are interested in upper-percentile estimates (e.g., defining background concentrations).

The method described in MTCA for handling censored data sets is the same as that used
- for estimating background concentrations, and for demonstrating compliance with groundwater,
surface water, and soil cleanup levels. The regulation requires that all concentrations below the
detection limit be assigned a value equal to one-half the detection limit of the method being used.
Measurements above the method detection limit, but below the PQL shall be assigned a value
equal to the method detection limit [WAC 173-340-708(11)(e), 173-340-720(8)(g), 173-340-
730(7)(f), 173-340-740(7)(g)]. However, "alternate statistical procedures" for handling censored
data may be approved by the department.

2.2.1 Additional Information

Three basic methods are available for estimating summary statistics for censored data sets:
1) simple substitution, 2) distributional methods, and 3) robust methods (Helsel 1990). These
methods range from simple to complex. The method described in MTCA is an example of
simple substitution, which involves substituting a single value for each BDL or below-PQL
value. Many studies have found that simple substitution methods do not estimate summary
statistics of the underlying population as well as more complicated methods for handling
censored data (Helsel 1990). [Use of methods 2) or 3) requires consultation with Ecology.]

Distributional methods estimate a distribution for the data and use the characteristics of the
distribution to estimate summary statistics. Helsel (1990) states that the best estimation method
in this category is the maximum likelihood estimator (MLE). MLEs have performed well for
percentile estimation, but not as well for estimating the mean and standard deviation of a data
set. This method is accurate only if the data fit the assumed distribution well, and the sample
sizes are large (e.g., >30) (Helsel 1990). Due to the small sample sizes likely to be available
at MTCA sites, however, these methods may not be appropriate.

Helsel (1990) recommends the use of robust methods for estimating the mean and standard
deviation. These methods use the observed data above the detection limit to assume a
distribution, and then extrapolate the distribution below the detection limit to calculate summary
statistics. If the data above the detection limit fit a normal or lognormal distribution, this can
be done with a probability plot. Robust methods are recommended when data do not appear to
fit the assumed distribution well. ‘

- The percentage of data below the detection limit will influence which methods are applicable
for a particular data set. ‘If the data set contains only a small percentage of censored data (e.g.,
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no more than 15 percent), simple substitution methods will be satisfactory for estimating
parameters. However, for estimation of summary statistics such as the mean and standard
deviation, the presence of a substantial number of BDL or below-PQL data poses a significant
problem from a statistical standpoint, unless more robust methods—discussed above—are used.
However, some statistical estimation methods are not influenced by censored data. For example,
the nonparametric confidence intervals about upper percentiles (Sections 5.2.2.3 and 5.2.2.4)
will not be influenced by some censored data.

2.2.2 Multiple Detection Limits [Alternative methods require consultation with Ecology.]

Data sets may contain data with more than one detection limit. This may occur when data
sets from multiple laboratories are combined, or data are analyzed at different times with
variations in the reporting limit (usually the limit becomes lower over time). Using the simple
substitution method (one-half the detection limit) described in the MTCA, multiple detection
limits will not pose a problem. However, if alternative methods for handling BDL data are
used, multiple reporting limits may cause some difficulties. Helsel (1990) recommends using
robust methods for estimating the mean and standard deviation, and MLEs for percentiles.

2.3 OUTLIERS
The EPA groundwater guidance (U.S. EPA 1988) states:

In many statistical texts, measurements that are very large or small relative to the rest
of the data, or are suspected of being unrepresentative of the true concentration at the
sample location are often called "outliers.” Observations which appear to be unusual
may correctly represent unusual concentrations in the field, or may result from
unrecognized handling problems, such as contamination, lab measurement, or data
recording errors. If a particular observation is suspected to be in error, the error
should be identified and corrected, and the corrected value used in the analysis. If no
such verification is possible, a statistician should be consulted to provide modifications
to the statistical analysis that account for the suspected "outlier” ... The handling of
outliers is a controversial topic. In this document, all data not known to be in error
. are considered valid because:

- The expected distribution of concentration values may be skewed (i.e., non-
symmetric) so that large concentrations that look like "outliers" to some
analysts may be legitimate,

- The procedures recommended in this document are less sensitive to extremely
low concentrations than to extremely high concentrations, and

- High concentrations are of particular concern for their potential health and
environmental impact.

There are no provisions in MTCA for excluding "outliers" that cannot be demonstrated to
be in error.
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3. SAMPLING

A wide variety exists in sampling designs. Each describes the number of samples, locations
for sampling, type of samples, and time frame for sampling. The sampling plan should be
considered carefully prior to performing any sampling or performing statistical analysis on data,
because a poorly designed sampling plan can greatly reduce the usefulness of the collected data.
The sampling method used can influence the effectiveness of the remedial action in protecting
human health and the environment. Sampling should be continued until the complete,
preplanned sampling workplan has been carried out. It is unacceptable to terminate a sampling
plan prematurely because the data collected to date indicate the results desired by the sampler
(e.g., the cleanup level has been met).

Many factors should be considered in sampling, including the objectives of the study, the
sampling method (e.g., random vs. systematic sampling), cost effectiveness of the sampling
program, statistical analysis to be performed on the data, and the expected type and distribution
of contaminants. In addition, several practical factors exist, such as legal and political
considerations (e.g.,. sampling on private property), site accessibility and availability, and
required equipment, which may affect sampling design. These factors influence sampling
locations as well as the number and type of samples required. Sampling design is an extensive
topic, and is beyond the scope of this document. However, its importance should not be
underestimated. In this document, it is assumed that sampling design issues have been
considered prior to performing statistical analyses of data. :

Gilbert (1987) presents concepts and considerations for several sampling methods (e.g.,
simple random, stratified random, systematic). Soil sampling locations are discussed in
McBratney et al. (1981); McBratney and Webster (1981) and U.S. EPA (1989a). Design of
groundwater monitoring systems is described in Nelson and Ward (1981). and Sophocleous et al.
(1982).

Special Comment on Hot Spots: No discussion of "hot spots" (highly contaminated local
areas) is presented in MTCA. Gilbert (1987) presents a method for locating single hot spots by
sampling on a square, rectangular, or triangular systematic sampling grid. Methods for locating
multiple hot spots are presented in Gilbert (1982) and Holoway et al. (1981).

Special Comment on Compositing: Compositing of soil, or occasionally groundwater,
samples refers to taking several samples and combining them into a single sample for analysis.
This is commonly done to reduce analytical costs. There are two common methods used for
compositing samples. The first method entails sampling segments of the soil core at random or
at systematic locations. The sampled portions are homogenized and then subsampled. The
second method requires retaining the entire soil core, homogenizing all the material, and then
subsampling. The second method is preferable from a statistical standpoint, because the
subsampling variance will be lower (U.S. EPA 1989a).
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Compositing may be useful in screening a large area for contamination (e.g., screening for
hot spots) in a cost-effective manner. In addition, compositing has been used successfully to
evaluate the risk associated with an "exposure unit," the area over which people are expected
to be exposed at a site and where cleanup actions are being considered (Ryti and Neptune 1991).
In this case, the average concentration of contaminants over an exposure unit is a meaningful
basis for assessing risk, and thus, compositing is a useful sampling technique (Neptune et al.
1990). : ‘

Despite the advantages associated with compositing, there are several problems that should
be considered prior to sampling.

® A contaminated sample may be overlooked due to the effects of dilution. For
example, suppose the detection limit for a particular contaminant is 1 mg/kg, and
the action level is 3 mg/kg. Ten samples are taken and composited into one
sample. If one sample has a concentration of 9 mg/kg, and all of the other
samples are uncontaminated, the dilution effect of mixing the single contaminated
sample with all the clean soil will cause the overall concentration measured in the
soil to be below the detection limit of 1 mg/kg, and the soil will be considered
clean. However, the local, hotspot concentration of 9 mg/kg is greater than the
3 mg/kg action level, and the site actually should be considered contaminated.

®  Compositing methods may be inappropriate unless the statistical parameter of
interest is the mean concentration. This is because the variance of the mean
contributed by differences in location across the site from composited samples will
be lower than the same variance associated with the mean from noncomposited
samples (U.S. EPA 1989a).

®  For contaminants such as volatile organics, compositing may cause the loss of
material from the soil sample, and will thus reduce the measured contaminant
concentration.

Due to these problems, compositing should be used only when it is supported by defined
sampling objectives and its use can be shown to be appropriate for those objectives. Unless
there is a well-defined reason for compositing, it should not be performed.

Several references are available that describe compositing of soil samples, including Duncan
(1962), Rohde (1976), Schaeffer and Janardan (1978), Elder et al. (1980), U.S. EPA (1983,
1984, 1989b), Neptune et al. (1990), and Ryti and Neptune (1991).

Special Comment on Variability and Error in Data: Variability in environmental data
can be attributed to two primary factors: 1) true variability in the population and 2) analytical
or statistical uncertainty or error. True variability in contaminant concentrations in soils and
groundwater may be due to a wide variety of factors, including:

B Natural variations in the geologic media '(e. g., composition, permeability, and
grain size)

m  Distance from the source of contamination and variations in the source over space
and time
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® - Differences in vegetation and in activity of microorganisms
‘B Temporal and spatial variations in background levels
®  Chemical reactions of contaminants (e.g., degradation and transformation)

B Seasonal variation (e.g., in precipitation or temperature).

In addition, several sources of error and uncertainty exist that can result in observed
variability in sampled data: _
B Measurement bias (constant factor by which measurements are too high or low)

B Uncertainty in measurements (random sampling error)

m Qliality assurance and quality control (QA/QC) problems. It is critical that the
data available at the time of statistical evaluations have been through a QA/QC or

data validation step and that they are deemed useful as reported for further
decision-making at the site.
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4. DETERMINATION OF CLEANUP STANDARDS
AND BACKGROUND CONCENTRATIONS

4.1 DECISION-MAKING PROCESS

This chapter addresses three issues:

1. In general, how are cleanup standards determined?

2. What are the criteria for using background concentrations to determine a cleanup
level?

3. How should the background data be used to set a cleanup level?

Prior to evaluating onsite data, the cleanup standard should be determined for the contaminants
present at the site. This standard may be based on appropriate applicable state and federal laws,
risk, ecological factors, and analytical considerations (e.g., BDL data, PQL), or may be related
to background levels of the contaminant near the site. The process involved in choosing a
method for determining a cleanup level is shown in Figure 10.

42 WASHINGTON ADMINISTRATIVE CODE DEFINITIONS

4.2.1 Establishing Cleanup Levels: Methods A, B, and C

Establishing cleanup standards (WAC 173-340-610) requires the specification of:

1. Cleanup levels

2. Points of compliance (locations where cleanup levels must be met) and time of
compliance (for groundwater)

3. Additional regulatory requirements that apply to a cleanup action because of the
type of action and/or the location of the site.

MTCA provides three basic methods for establishing cleanup levels in groundwater, surface
water, soil, and air (WAC 173-340-700). Cleanup levels resulting from these methods may be
broadly defined as:

B  Method A—numerical standards (routine cleanup method)

B Method B—site-specific method that includes risk-assessment-based standards,
standards based on applicable state and federal laws, or background concentrations
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Method A Criteria:
 Routine cleanup action

- obvious and limited choice of
cleanup methods

- reliable and capable cleanup

" methods _

- cleanup standards obvious
undisputed and allow
adequate margin of safety

- Ecology has experience with
similar actions

- EIS not required

- typically would not include
ground water

or

* Numerical standards available
for all indicator hazardous
substances, in all media of
concern

- Method A tables

- applicable state and federal
laws

- natural background
concentrations

- practical quantitation limits

"Industrial” Criteria:

+ Zoned or otherwise designated.
industrial

« Current or past industrial use

* Adjacent properties are
.industrial

* Future use industrial

+ Cleanup action includes
institutional controls

Method C Criteria:

» Method A or B cleanup levels
below area background

« Attainment of Method A or B
cleanup levels would create
significantly greater overall
threat to human health or the
environment '

* Not technically possible to
achieve Method A or B cleanup
levels

Industrial
Clasification
Soils Only

Does site meet
criteria for using Method A?
WAC 173-340-700(3)(a)
WAC 173-340-704

Does site meet criteriab
for "industrial” classification?
WAC 173-340-745(1)(b)

Use Method B to determine

(optional)

Use Method A to determine
soil cleanup levels
WAC 173-340-740

yes

Is
this a soil
?

no

cleanup levels -
WAC 173-340-700(3)(b)
WAC 173-340-705

Does site meet

criteria for using Method C?
WAC 173-340-700(3)(c)

WAC 173-340-706(1)

Evaluate Method B
cleanup levels

Use Method C to determine
cleanup levels
WAC 173-340-706

site meet criteria for

using industrial Method A?
WAC 173-340-700(3)(a)
WAC 173-340-704

WAC 173-340-745(2

Use Method C industrial to
develop soil cleanup levels
WAC 173-340-745(3)

(optional)

Use Method A industrial to
develop soil cleanup levels
WAC 173-340-745(2)

Figure 10. Flowchart for determining whether Method A,B, or C should be

used for establishing cleanup levels.
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(standard method)

m  Method C—when compliance with Method A or B cleanup levels is impossible or |
may cause greater environmental harm or if site is an industrial site (conditional
method).

4.2.1.1 Method A: Tables—Method A can be applied if either of the following conditions
are met (WAC 173-340-704):

1. The site qualifies for a routine cleanup action. A cleanup action can be consid-
ered "routine" if all of the following criteria are met [WAC 173-340-130(7)]:

- It involves an obvious and limited choice of cleanup methods

- It uses a cleanup method that is reliable and has been proven capable of
achieving cleanup standards

- Cleanup standards for each hazardous substance addressed by the
cleanup are obvious and undisputed, and allow an adequate margin of
safety for protection of human health and the environment

- Ecology has experience with similar actions
- An environmental impact statement is not required.

Cleanup of groundwater will not normally be considered a routine cleanup action
[WAC 173-340-130(7)(c)].

2. Numerical standards are available for all indicator hazardous substances in all
media of concern. Numerical standards may be available in the regulations
(Tables 1, 2, and 3 of WAC), or applicable state and federal laws. Under Method
A, cleanup levels must be at least as stringent as concentrations specified in these
sources. If they are not available from these sources, cleanup standards can be
set at natural background concentrations or the PQL for the substance in question.
Ecology may set more stringent standards if needed to protect human health and
the environment.

4.2.1.2 Method B: Standard Method—The regulations [WAC 173-340-700(3)(b)] state
that under Method B:

...cleanup levels for individual hazardous substances are established using applicable
state and federal laws or the risk equations specified in WAC 173-340-720 through
173-340-750. For carcinogenic compounds, cleanup levels are based upon the upper
bound of the estimated excess lifetime cancer risk of one in one million. For
individual noncarcinogenic substances, cleanup levels are set at concentrations which
are anticipated to result in no acute or chronic toxic effects on human health and the
environment. Where a hazardous waste site involves multiple hazardous substances
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and/or multiple pathways of exposure, Method B cleanup levels for individual
substances must be modified in accordance with the procedures in WAC 173-340-708.
Under this method, the total excess lifetime cancer risk for a site shall not exceed one
in one hundred thousand and the hazard index for substances with similar
noncarcinogenic toxic effects shall not exceed one (1).

42.1.3 Method C: Conditional Method—Method C cleanup levels may be established
based on applicable state and federal laws and a site-specific risk assessment if any of the
following conditions are met (WAC 173-340-706):

1. Cleanup levels established using Method A or B are below area background
concentrations.

2. Attainment of Method A or Method B cleanup levels has the potential for creating
a significantly greater overall threat to human health or the environment than
attainment of Method C cleanup levels.

3. Method A or Method B cleanup levels are below technically possible concentra-
tions. "Technically possible" means that remedial measures are capable of being
designed, constructed, and implemented in a reliable and effective manner,
regardless of cost (WAC 173-340-200). '

4. The site is defined as an industrial site (see WAC 173-340-745) and meets the
criteria for establishing soil cleanup levels under WAC 173-340-745:

m  The site is zoned for industrial use
®  The site is currently used for industrial purposes
B Adjacent properties are currently used for industrial purposes

®  The site is expected to be used for industrial purposes in the
foreseeable future

®  Institutional controls will be nnplemented as part of the remedial
action.

Additional criteria for using Method C include:
®  All ARARs will be met
®  All practicable methods of treatment will be used

®  Institutional controls will be implemented
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A flowchart for use in determmmg whether Method A, B, or C is appropriate for establish-
ing cleanup levels at a site is shown in Figure 10.

4.2.2 Natural vs. Area Background

The MTCA regulation makes a distinction between natural and area background concentra-
tions.

4.2.2.1 Natural Background—Natural background refers to the concentration of a
constituent that occurs naturally in the environment and has not been influenced by localized
human activities. An example presented in MTCA (WAC 173-340-200) is that several metals
occur naturally in the bedrock and soils of Washington State due solely to the geologic processes
that formed these materials; therefore, the concentrations of these metals would be considered
natural background. In addition, some constituents have been used globally, and low concentra-
tions of these contaminants can be found in soils and groundwater throughout much of the state.
These concentrations are the result of widespread use of the constituents and not localized human
activity. Examples presented of constituents for which low concentrations would be considered
- natural background include polychlorinated biphenyls (PCBs) and radionuclides (due to fallout
from bomb testing and nuclear accidents).

For comparison of onsite constituent concentrations with natural background levels, data
should be obtained from a suitable reference area that is comparable to the site (e.g., similar
geology and soil characteristics).

4.2.2.2 Area Background—Area background is defined as the concentration of hazardous
substances that are consistently present in the environment in the vicinity of a site, and are the
result of human activities unrelated to releases from that site. The size of the area affected by
a particular contaminant is smaller for area background levels than for natural background. For -
example, lead levels in Seattle might be higher than lead levels in Bellevue; area background
concentrations would therefore be different in these two cities.

4.3 SOIL CLEANUP STANDARDS BASED ON BACKGROUND DATA

MTCA regulations allow background concentrations to be considered in establishing cleanup
standards. The role of background concentrations within the regulation and the procedures for
background data evaluations are discussed in the sections below. Details of the statistical
methods used for background data evaluations are provided in Sections 2 and 5.
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43.1 Characteristics of Background Data Sets

Several characteristics of background data should be recognized:

‘® . Background data are variable, and samples will typically reflect a range of values,
not a single value. Therefore it is appropriate to consider the distribution of
background values (see Section 2.1.4).

B The distribution for background data may vary from one site to another, one
environmental medium (e.g., soil, groundwater) to another, and one constituent
to another. Background data may occur in the form of normal, lognormal, or
other distributions, although it is expected that many background distributions will
be (approximately) lognormal. The form of the data distribution should be
considered in evaluating background values for each constituent, in each medium,
at each site. :

B BDL results are common for many constituents in background samples, and the
frequency of BDL results may be much higher than for most compliance monitor-
ing data sets. Therefore, specific methods for dealing statistically with BDL
values (i.e., the regulation’s default approach, assigning one-half of the detection
limit to BDL values, or an alternative approach) should be identified (see Section
2.2).

43.2 - Uses of Background in the Cleanup Standards Regulation

The distinction between natural background and area background values is important with
respect to the uses of background data in the cleanup standards regulation (see the discussion in
Section 4.2.2 above). Background data can generally be used in three ways to establish cleanup

" standards:

1. Natural background can be used to establish a cleanup standard for a hazardous
substance for which no applicable or relevant and appropriate requirement (ARAR) or
cleanup standard regulation value exists [WAC 173-340-704(2)(c)].

2. Natural background can be used to replace an existing Method A, Method B, or
Method C cleanup standard when that standard is below the natural background level
[WAC 173-340-700(4)(d)].

3. When Method A or Method B cleanup standards are below area background levels,
Method C can be used to establish the cleanup standard. That cleanup standard may
be equal to the area background value if it is within the allowable range for Method
C standards, but the standard may not be greater than the maximum concentration
allowable under Method C calculations [WAC 173-340-706(1)(a)].

Situations in which either natural or area background values will result in cleanup standards
higher than those derived in Methods A, B, or C, based on ARARs or risk-equivalent
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calculations, may be infrequent. For many cleanup standard decisions, background values will
not affect the cleanup standards. However, in cases where background values lead to the
adoption of higher cleanup standards, this decision can be of great importance for reaching
decisions on site cleanup. A flowchart presenting the role of background values in determining
cleanup levels is shown in Figure 11.

433 Calculation of Background Values

4.3.3.1 General Issues—The uses of background data specified in MTCA regulations
require that the distribution of background values (i.e., the varying concentrations reported
within a set of background samples) be represented by a single selected value. That value will
determine, for example, whether or not a numerical cleanup standard established under Method
A, B, or C is below background.

The regulation states the following requirements [WAC 173-340-708(0),(d), and (e)]:

1. The statistical method used to evaluate available data shall be appropriate for the
statistical distribution (e.g., lognormal) of each hazardous substance.

¥

2. The lower tolerance limit may be used to compare a cleanup standard with back-
ground. That lower tolerance limit shall be based on a coverage of 95 percent and a
tolerance coefficient of 95 percent (i.e., the background value shall be the lower 95
percent confidence limit on the 95th percentile of the background distribution).

3. Other statistical methods may be used if approved by Ecology.

4. Values below the method detection limit shall be assigned a value equal to one-half of
the method detection limit. Values above the method detection limit but below the
practical quantitation limit shall be assigned a value equal to the method detection
limit. Alternative procedures for addressing not-detected values may be used if
approved by Ecology.

Ecology has determined that the statistical procedures included in the regulation, including
the use of lower tolerance limits, do not provide an appropriate method for evaluating
background data and comparing cleanup standards to background. Therefore, alternative
procedures are described in this guidance document. They are discussed in Section 4.3.3.2
below.

The same statistical methods are used for both natural and area background data, regardless
of the intended uses of the data. The main features distinguishing natural and area background
data sets under MTCA are the location and number of samples. The same locations are not
equally representative of natural and area background conditions; therefore, any sampling plan
for collecting background data should be carefully designed and reviewed with respect to the
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cleanup levels
to be set at natural
background under
Method
A?

no

Y

Determine cleanup level for
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levels likely to be

Calculate natural background
value (Section 4.3.3.2)

no:

less than natural

background
?

yes

Y

Calculate natural background
value (Section 4.3.3.2)

Is
cleanup level
less than natural
background value?
(Section 4.3.4.)

yes

Y
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any cleanup

levels likely to be
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background
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?

Calculate area background
value (Section 4.3.3.2)

background value (Section 4.3.4.)

any cleanup
levels less than area
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(Section 4.3.4.)
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'

yes

Under Method A: May use Method C
cleanup levels

May use Method C
cleanup levels

May use area background
as cleanup level, subject
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allowable Method C

cleanup levels

Under Method B:

Under Method C:
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Use Method A cleanup
levels
Use Method B cleanup
levels
Use Method C cleanup
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Figure 11. Flowchart demonstrating the role of background values in
determining cleanup levels.
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representativeness of those locations for the type of background data being sought. Area and
natural background samples cannot be combined meaningfully in a single data set.

For soils data, the regulation specifies minimum numbers of background samples [WAC
173-340-708(11)(d)]. At least 10 soil samples are required to determine natural background
levels, and at least 20 are required to determine area background levels. The minimum number
of samples required for other media is not defined in the regulation and needs to be determined
on a case-by-case basis. The minimum sample sizes of 10 or 20 samples may not result in data
sets that provide accurate and representative estimates of background values (i.e., sampling
errors may be relatively large). Estimates of upper percentile values of the background
distribution may be particularly affected by small sample sizes. In many cases, it may be
appropriate to collect a larger number of background samples to reduce possible sampling error
effects and reach a better decision on cleanup standards.

The flowchart in Figure 12 provides an overview of the data evaluation procedures for
determining possible cleanup standards based on background. Default procedures are shown in
the left-hand column of Figure 12. The right-hand column provides for alternative methods. A
numerical cleanup standard is still established, but it may be based on different data evaluation
procedures. This could be as the result of site-specific characteristics, such as the form of the
background data distribution, its coefficient of variation (CV) or degree of skew, the number of
samples available, or other such factors.

The use of alternative procedures rather than the default procedures of Figure 12 for
evaluations at MTCA sites will require submittal of adequate supporting information on the
performance of the proposed tests (e.g., Type I and Type II error rates). Alternative procedures
cannot be used unless they are reviewed and approved by Ecology.

43.3.2 Calculation Methods (Examples 9 and 10)—The default procedures for
determining a cleanup standard based on background data are illustrated in Figure 12 and are
discussed in this section. An abbreviated summary of the procedures shown in Figure 12 is
provided in Supplement S-4. Statistical methods referred to in these default procedures are
described in Sections 2, 5.2, and 5.3.

The default procedures result in a numerical value, calculated from site background data,
that is used to represent background for evaluations of cleanup standards and compliance with
background-based cleanup standards. Background data are assumed to be lognormally
distributed; contrary assumptions shall not be made unless a lognormal distribution is statistically
rejected at the 0.05 level. Lognormal distributions have a positive skew; this is often representa-
tive of data from environmental measurements, which are constrained on the low side by zero
or the limits of analytical detection. Ecology performed computer analyses (called "Monte
Carlo" simulations) to examine the performance (Type II error rates and power to detect residual
contamination) of various percentiles of lognormal distributions as candidates for defining
background cleanup standards. Those simulations included lognormal distributions with varying
coefficients of variation (i.e., varying degrees of skew). Similar simulation evaluations were
also performed for normal distributions. Based on the results of the Monte Carlo simulations,
Ecology has selected the 90th percentile value as the default background value for cleanup
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Figure 12. Flowchart for determination of cleanup
‘standards based on background data.
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TECHNICAL ATTACHMENT 1
TO FIGURE 12

ALLOWABLE FREQUENCY OF EXCEEDANCE OF CLEANUP STANDARDS BASED ON BACKGROUND
[Requires consultation with Ecology]) '

The cleanup regulations under MTCA include provisions for limiting the frequency of exceedances of a
cleanup standard to no more than 10 percent. Where a cleanup standard is established based on risk estimates,
ARARs, or other approaches at a level above background, the possibility of a "false positive” result does not arise.
However, for a cleanup standard based on background, the possibility that exceedances of the standard occur as
a result of chance alone (false positives) should be considered explicitly. This results in an adjustment to the
allowable frequency of exceedances for background-based cleanup standards only.

A cleanup standard selected at a given percentile of the background distribution defines the probabilities of
any single random sample from that background distribution being above or below the cleanup level. For example,
a cleanup standard established as the 90th percentile (using the default procedures) of a background ‘distribution
results in a probability of 0.10 for a single sample exceeding the cleanup level, and 0.90 for that sample being less
than the cleanup level. This "binomial" outcome leads directly to use of the binomial theorem to calculate
probabilities of any frequency of exceedance of the cleanup level. Probabilities of exceedance depend only on the
percentile chosen for background, the number of compliance monitoring samples, and the exceedance frequency.

Based on the percentile of background that the cleanup standard represents, let p and q represent the
probabilities of a single random sample being greater than and less than (or equal to) the cleanup standard,
respectively. For the default procedures where the cleanup standard is at the 90th percentile, as discussed above,
p = 0.10and q = 0.90. Letn be the number of compliance monitoring samples. Then, by the binomial theorem,
the probability of exactly k out of the n compliance monitoring samples exceeding the cleanup standard is:

probability =p kq'"* (2)
where

() = [n(n=1) (n-2)...(n—k+1)/K!

The last term on the right in the probability equation gives the number of different ways of selecting the k
out of n samples that exceed the cleanup level (order of sampling not considered). Each such result has the same
probability, namely p‘q"™*. Using this equation to calculate the results for individual k values, the probability of
k or more exceedances can easily be determined.

It should be recognized that there is a non-zero probability that none of the n samples exceeds the cleanup
standard. For example, the probability that O of 10 compliance monitoring samples exceeds a cleanup standard
based on the 90th percentile of background is just (0.9)'° = 0.349. Since some outcome must be observed, the
sum of the probabilities from k = O to k = n must equal 1. Table A-5 provides binomial distribution results for
selected values of p and n. '
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A 0.05-level false positive error probability is considered in the following analysis. With a discrete, rather .
than continuous, set of outcomes (only integral values are possible for k, the number of compliance monitoring
results above the cleanup standard), an exact 0.05-level criterion is not available. The table below provides some
illustrative results assuming that the cleanup standard is established at the 90th percentile of background:

Probability of k or more exceedances

number of samples:

k 10 15 20 25 30 40 50
3 .070 .184

4 013 .056 .133

5 013 .043 .098

6 011 .033 .073

7 .010 .026 .100

8 .042

9 .016 .058
10 .025

An appropriate criterion for the allowable exceedances of a cleanup standard based on the 90th
percentile of background can be determined from information on the probability of k or more exceedances out of
n compliance monitoring samples. For example, with 20 compliance monitoring samples, the probability of 5 or
more exceedances is 0.043 (approximately 0.05), and the maximum allowable number of exceedances is 4, or
20 percent. :

Table A-5 may provide the information necessary for calculation of the probabilities of k or more
exceedances in specific cases. To illustrate how to perform the necessary calculations, consider a case where
the cleanup standard is established at the 80.22nd percentile of background, and 10 compliance monitoring
samples are collected. Using the basic probability equation given above for the probability of exactly k out of n
exceedances, a table of values can be simply computed. The values for p, q, and n are {1 - 0.8022), 0.8022,
and 10, respectively. The initial values in such a table are:

Probability of exactly k out of 10 exceedances

k probability

0 0.1104  p°q™

0.2721  p'q®(10)

2 0.3019  [p*q®(10)(9)1/2

3 0.1985  [p°q’(10)(9)(8)1/(3)(2)

4 0.0857  [p*q®(10)(9)(8)(7))/(4)(3)(2)

-

The probability of 5 or more out of 10 compliance monitoring samples exceeding a cleanup standard
based on the 80.22nd percentile of background is 1 minus the sum of the tabled probabilities fork = O, 1, 2, 3,
or 4, or a probability of (1 — 0.9686) = 0.031. Thus, a maximum allowable number of exceedances would be
4 based on a 0.031-level false positive error rate. '

NOTE: These tables are for illustrative purposes only. Contact Ecology for site-specific allowable exceedance.
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standard values will be at the 90th percentile up to a CV of about 1.5, and at 4 times the 50th percentile for CV
values at or above 1.5. The results are as follows:

Maximum exceedance factor of cleanup standard (selected false positive rate = 0.05)

number of samples:

cv 10 20 30
0.1 1.14 1.16 1.18
0.2 : 1.29 1.35 139
0.3 148 1.56 ' 162
0.4 1.65 1.79 1.89
0.5 1.84 2.04 2.18
0.6 2.05 2.31 2.49
0.7 2.26 2.60 2.83
0.8 2.49 2.90 3.19
0.9 2.71 3.21 3.56
10 2.94 3.52 3.94
1.5 4.10 5.19 6.01
2.0 6.56 8.66 10.27

These results illustrate that the maximum exceedance factor at a 0.05-level false positive error rate
increases as either the number of compliance monitoring samples or the background distribution CV increases.
At CV values above 1.5, the cleanup standard based on 4 times the 50th percentile value will also be lower than
the 90th percentile; that difference in cleanup levels also increases the maximum exceedance factor.

Similar procedures can be used to determine a maximum exceedance factor for compliance monitoring
samples in cases of other sample sizes, other CV values for a lognormal background distribution, cleanup standards
at other than the default percentiles, or other types of known background distributions. For example, with 15
compliance monitoring samples, a lognormal background distribution with a CV = 0.7, and a cleanup standard
at the 90th percentile, an exceedance factor of 2.46 results. For 10 compliance monitoring samples, a lognormal
background distribution with a CV of about 3.65, and a cleanup standard at 4 times the 50th percentlle
(approximate 80.22nd percentile), an exceedance factor of about 16.5 results.

NOTE: This table is for illustrative purposes only; contact Ecology for site-specific allowable exceedance factor.
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TECHNICAL ATTACHMENT 2
TO FIGURE 12

ALLOWABLE MAGNITUDE OF EXCEEDANCE OF CLEANUP STANDARD BASED ON BACKGROUND
[Requires consultation with Ecology]

The cleanup regulations under MTCA include provisions for limiting the maximum magnitude of
exceedance of a cleanup standard in a compliance monitoring data set to no more than two times the cleanup
level. Where a cleanup standard is based on risk estimates, ARARs, or other approaches at a level above
background, the possibility of a "false positive” result does not arise. However, for a cleanup standard based on
background, the possibility that the maximum compliance monitoring value exceeds twice the cleanup level by
chance alone (false positive) should be considered explicitly. This may result in an adjustment for the maximum
allowable exceedance factor for backaround-based cleanup standards only. '

The maximum allowable exceedance factor can be calculated to achieve a desired false positive error
rate, for example 0.05, assuming that the background distribution is known. Under the standard default
procedures, the background distribution is lognormal; the calculations illustrated here are for that distribution. The
adjustment in the maximum factor of exceedance of a cleanup standard depends on the number of compliance
monitoring samples, the shape of the lognormal distribution (determined by its coefficient of variation [CV], the
standard deviation divided by the mean value for the distribution), and the percentile of background at which the
cleanup standard is established.

For a given compliance monitoring sample size, n, a percentile of the distribution at which the
probability of 1 or more exceedances is equal to 0.05 is calculated first. That probability is equal to 1 minus the
probability of no exceedances. Let the percentile be denoted as (100 x q), so that q represents the probability of
a single random sample being less than (or equal to) the percentile (see Attachment 1). Then

1-q" = 0.05
095 = q"
and
(log,0.95)/n = log,q

q-= e(logeo. 95/n)

The percentile of the distribution is then equal to 100q. For example, the value of 100q when there
are 10 compliance monitoring samples is

100q = 100 x e(loan.SS/‘lO)

100 X e(~0.0051)

99.49

so there is a 5 percent chance of 1 or more out of 10 random samples from background exceeding the 99.49th
percentile of the background distribution. The percentiles for 15, 20, and 30 compliance monitoring samples are
the 99.66th, 99.74th, and 99.83rd, respectively.

Using information on the background distribution (i.e., the best-fit lognormal distribution under standard
default procedures), the value at the percentile corresponding to this 0.05 false positive error rate can be
estimated. This can be done using a computer statistical package such as STATGRAPHICS®, or by calculating
percentiles using log,-transformed values and back-transforming to original units (e.g., see Example 10). The
resulting value defines a criterion for limiting the maximum exceedance of the cleanup standard at a 0.05 false
positive error rate.

A table of exceedance factors can be developed by calculating percentile values as described above
and comparing them to cleanup standard values. Assuming a lognormal background distribution, default cleanup
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standard and site evaiuations, subject to certain constraints discussed below. Section 2.1.2
discusses the estimation of percentile values.

The performance of the 90th percentile, especially with respect to Type II error rates
(finding a site to be contaminated when it is really at background; Section 2.1.7), declines as
the coefficient of variation (CV) of a background lognormal distribution increases. It is not
known what CV values will characterize actual background data sets; many of them are expected
to be only modestly skewed. It is noted that alternative procedures may become increasingly
appropriate as the CV increases above about 0.5.

To address the possible significant increases in exposures and human health risks at 90th
percentile background values, especially for strongly positively skewed background distributions,
an additional evaluation measure is applied. Typical background values may be defined as at
or near the 50th percentile value. The ratio of the 90th to the 50th percentile values for
background is a measure of how far the potential cleanup standard value at the 90th percentile
is above typical background levels. This ratio will be larger when the positive skew in the
distribution is larger. As a matter of policy, Ecology constrains possible background cleanup
standards to no greater than 4 times the 50th percentile concentrations. (This assumes that a
risk-based cleanup standard based on Method A, B, or C is below the 50th percentile of
background; if it is in fact above the 50th percentile, the limiting value for a background-based
standard would be 4 times the Method A, B, or C cleanup level). Therefore, after a 90th
percentile background concentration is determined, it is compared to a 50th percentile value and
this ratio test is applied. In cases where 4 times the 50th percentile value is less than the 90th
percentile value, this results in a lower background cleanup standard and a somewhat higher
clean-site failure rate, balanced by lower potential exposures and human health risks.

The choice of the 90th percentile concentration of background for evaluation of cleanup
standards and compliance actually depends on both the background and compliance monitoring
data sets. If the background data are tested and rejected as lognormal (e.g., using the W test;
see Section 2.1.4.1), the 90th percentile should not be used. A different percentile will be
appropriate depending on the distribution of the background data. For example, Ecology
simulations of background data sets drawn from a normal distribution indicate that the 80th
percentile would be suitable in that case. The same percentile value does not result in the same
performance (error rates and power to detect residual contamination) for different data
distributions. If the background data are not lognormally distributed, Ecology should be
consulted for alternative procedures. Example 9 illustrates a case where the background data
appear to be normally rather than lognormally distributed. Example 10 addresses lognormal
background data.

The choice of the 90th percentile when the background data are lognormally distributed is
also contingent on the use of the method of Land (1971, 1975) for estimating an upper
confidence limit on the mean of the compliance monitoring data distribution. That method is
described in Section 5.2.1.2 and is only appropriate when the data are lognormally distributed.
Therefore, if the compliance monitoring data are tested and rejected as lognormal, the 90th
percentile may no longer be appropriate to use for background evaluations. Ecology should be
consulted if background data are lognormally distributed but compliance monitoring data are not
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lognormal before proceeding with site compliance evaluations. The percentile defining
background under MTCA could change in such cases from the default 90th percentile value.

In some cases, it may be appropriate to consider collecting additional background data to
determine if the background distribution is really as skewed as suggested by an initial, small
background data set. Any such additional background sampling should be carefully reviewed
with Ecology before assuming that the data will be used in background evaluations. Higher
background values should always be carefully reviewed to establish whether they could be
influenced by a localized contaminant source (i.e., whether they are really representative of
background).

Worksheet W-3 provides detailed instructions for calculating a background value for
lognormally distributed data. Examples 9 and 10 provide comparisons of parametric and
nonparametric methods for estimating percentiles of a distribution. When a specific distribution
(e.g., lognormal or normal) is assumed for background, appropriate parametric methods should
be used.

434 Establishing a Cleanup Standard from Background Data

After calculating an appropriate background value from a background data set, using the
methods described in Section 4.3.3.2 above, the comparison of that value with a Method A, B,
or C cleanup standard is straightforward. It simply involves the comparison of two numbers.

In the case of natural background comparisons, the higher of the two values will becom
the cleanup standard. .

In the case of area background comparisons, a Method A or Method B cleanup standard that
is greater than area background will still be used as the cleanup standard. If, on the other hand,
area background is greater than the standard, then a Method C cleanup standard can be derived
and used. The resulting standard may or may not be as large as the area background value.

For any comparison based on a given background data set, the results of the comparison
may be accepted or additional background data may be collected, the background value -
recalculated based on a larger (pooled) data set, and the comparison re-evaluated. Collection
of additional background data (sampling design, access agreements, sample collection, laboratory
analysis, QA/QC review, and data validation) would normally require additional time. This
should not be allowed to unnecessarily delay making site decisions. Schedule allowances for the
possibility of a second round of background data collection should be considered early in the
project. ‘

The pooling of data collected in different time frames, and possibly involving different
sampling procedures or analytical laboratories, also should be considered carefully prior to a
second round of sampling. Sampling locations and sampling plans to be used for background
characterization should be approved by Ecology. While the enhancement of a site background
data set offers an opportunity for better characterization of background, and thereby better
decision making, there are also statistical issues involving the post-hoc selection of a most-
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favorable data set for evaluation (continuing sampling until a favorable result is obtained and .
then stopping, introducing bias into the characterization process). Therefore, all background
sampling should be carefully reviewed with Ecology.

435 Evaluating Compliance Monitoring Data When a Cleanup Standard is Based on
Background (Example 11)

Once a numerical cleanup standard has been selected, whether based on risk-equivalent
concentrations, ARARS, ecologically protective levels, natural or area backgrounds, or other
criteria, the evaluation of compliance monitoring data with respect to the cleanup standard
proceeds in exactly the same way. The fact that a numerical cleanup standard has been derived
based on background data does not affect the types of evaluations of compliance monitoring data.
However, some adjustments are required in the criteria based on the allowable frequency and
magnitude of exceedance of a cleanup standard (see Section 5) when that standard is based on
background. Those adjustments are discussed in this section, and are apphcable only in the case
of background -based standards.

The computer analys1s performed by Ecology indicates that, for both the frequency and
magnitude-of-exceedance criteria, evaluation of Type II error rates indicates that the criteria
defined in the MTCA regulation should be adjusted when the cleanup standard is based on
background. The probability of having more than 10 percent of the compliance monitoring
samples above the 90th percentile of background is relatively high if the compliance monitoring
data are from the background distribution (i.e., if the site is clean). Therefore, the criterion
based on frequency of exceedance of the cleanup standard should be adjusted to a somewhat
higher percentage. Attachment 1 to Figure 12 describes an adjustment procedure that should be

‘used. For example, for relatively small compliance monitoring sample sizes (n<30), not more
than 20 percent of the samples should exceed a standard based on the 90th percentile background
value. Consult Ecology for other cases (see Attachment 1).

An adjusted maximum allowable exceedance factor of the cleanup standard will depend on
the number of compliance monitoring samples, the percentile used for a cleanup standard, and
the CV of the lognormal distribution. Attachment 2 to Figure 12 describes how to determine
a 0.05-level exceedance factor. For relatively small sample sizes and CV values, the usual
criterion of no sample values more than two times the cleanup standard is still suitable. In other
cases, a higher factor of exceedance is required. Attachment 2 provides details of the
procedures for determining an appropriate factor for evaluating background-based standards
(requires consultation with Ecology).

Evaluation of compliance monitoring data is the subject of Section 5.0. An illustration of
such an evaluation based on a background cleanup standard is provided in Example 11.
Appropriate adjustments to the frequency and magnitude-of-exceedance criteria are illustrated
in Example 11. (See also Example 12).
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44 GROUNDWATER CLEANUP STANDARDS BASED ON BACKGROUND DATA
(Example 12) :

Except for the requirement to assess compliance at each well or monitoring point [WAC
173-340-720(8)(c)(iv)], cleanup standards for groundwater are evaluated in almost exactly the
same manner as those for soils or any other medium under MTCA. Therefore, the discussion
for soils in section 4.3 above is equally applicable to groundwater. The only other issue for
which the regulation treats soils and groundwater differently is the minimum number of
background samples, which is specified for soils but left to a case-by-case determination for
groundwater. Costs for collecting groundwater samples are typically much higher than for soil
samples, often resulting in fewer groundwater samples being collected and smaller data sets
being available for evaluation. The importance of the background data for site decisions should
always be considered in addition to cost; the need for an adequate database may justify collecting
more groundwater data, even at substantially increased costs.

The spatial and temporal aspects of groundwater variability are somewhat different than for
soils and should be carefully considered in designing any background data collection program
(see Section 5.3.5). Groundwater samples collected within reasonably small areas (i.e., close
to the site) may not reflect the same groundwater population. Hydrogeologic and statistical
information should be considered in evaluating the representativeness of groundwater samples
for defining a background value related to site conditions. It is not necessary that samples be
from hydraulically connected locations, but it is necessary that they be from representative
locations.

Background groundwater concentrations, as well as onsite concentrations, may also vary
substantially over time (e.g., seasonally). This may be particularly important for comparing
compliance monitoring data and background-based cleanup standards. Seasonal variation—for
example as influenced by different precipitation and infiltration rates throughout the year—should
not be confounded with differences between site and background concentrations.

Both spatial and temporal components of variation in groundwater concentrations should be
carefully evaluated as part of the design of any sampling program, but especially for background
sampling where the data will be used for cleanup standards decisions. In general, multiple
samplings from the same well cannot be used to increase sample size unless a demonstration can
be made that repeat measurements at individual wells are not significantly correlated temporally.
Any such demonstration should address temporal and spatial variability independently.

An example of the development of a groundwater cleanup standard based on background

data is provided as Example 12. Additional considerations for groundwater are discussed in
Section 5.3.5.
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4.5 SURFACE WATER CLEANUP STANDARDS [RESERVED]

4.6 AIR QUALITY STANDARDS [RESERVED]

4.7 SEDIMENT STANDARDS [RESERVED]
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5. ASSESSMENT OF COMPLIANCE MONITORING DATA FOR
MEETING CLEANUP STANDARDS

5.1 DECISION-MAKING PROCESS

After the cleanup standard has been determined (see Section 4), the data from the site must
be evaluated to determine whether the exposure unit meets the cleanup standard. This decision
is independent of the approach used to define the numerical cleanup standard. As described in
Section 4, the cleanup standard may be based on applicable state and federal laws, risk,
ecological factors, or analytical considerations (e.g., BDL data, PQL), or may be related to
background levels of the contaminant near the site. In all cases, a single numerical value is
obtained for the cleanup standard, to which site data can be compared. The process involved
in making the decision as to whether the exposure unit meets cleanup standards for soils and
groundwater is shown in Figures 13 and 14, respectively. Note that the criteria for allowable
frequency and maximum magnitude of exceedance of cleanup standards may be adjusted in
consultation with Ecology if the cleanup standard is based on background, as described in
Section 4, and covered in Figure 12.

If issues at a particular site become more complex than those covered in thls document,
additional assistance should be sought from a statistician or Ecology.
5.2 COMPARING SITE DATA TO SOIL CLEANUP STANDARDS

Two methods for demonstrating that the site meets the cleanup standards are recognized:

a method using a confidence interval, and a parametric method for percentiles. The MTCA
regulations state:

For cleanup levels based on short-term or acute toxic effects on human health or the
environment, an upper percentile soil concentration shall be used to evaluate compli-
ance with cleanup levels [WAC 173-340-740(5)(c)(iv)(A)].

and

For cleanup levels based on chronic or carcinogenic threats, the mean' soil concentra-
tion shall be used to evaluate compliance with cleanup levels... [WAC 173-340-

74065)(c)(iv)(B)]
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See section 5.2.1.4 for discussion

Is

yes number samples

<20
?

Design sampling plan for
onsite soils (Section 3 [reserved])

Y

Sample soils and determine
cleanup level

If n is sufficiently large, use method
in Section 5.2.1.3, otherwise, see
discussion in Section 5.2.1.4

Are data
normally or lognormally

distributed
?

Y

Calculate upper confidence limit
on mean. |f data are lognormally
distributed, use H values and the
method of Land (1971, 1975)
(Section 5.2.1.2). ‘See Section
5.2.1.1 if data are normally
distributed

Calculate upper tolerance limit for
90th percentile (Section 5.2.2)
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than the cleanup

I
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any single
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?
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more than 10%
of samples exceed
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?

Note: If the cleanup standard is
based on background, these
criteria may be adjusted. See
Section 4 and Figure 12

Site considered clean
(uncontaminated)

Figure 13.

Flowchart for determining if soils at a site meet a cleanup standard.
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See section 5.2.1.4 for discussion
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discussion in Section 5.2.1.4
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Figure 14. Flowchart for determining if groundwater at a site meets

a cleanup standard.
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Thus, the confidence interval approach (Section 5.2.1) should be used for cleanup levels
based on chronic or carcinogenic effects, and the tolerance interval approach (Section 5.2.2)
should be used for cleanup levels based on short-term or acute toxic effects. Also acceptable
are "other statistical methods approved by the department” [WAC 173-340-740(7)(d)].

The confidence interval and tolerance interval methods should not be performed on data that
‘cannot be approximated by a normal or lognormal distribution. A distribution-free (non-
parametric) method should be used for this type of data. Nonparametric confidence interval
estimates are described in Section 5.2.1.3 and 5.2.1.4 below.

5.2.1 Evaluation of Compliance Monitoring Data Based on Upper Confidence Limit on
the Mean

The MTCA soil compliance monitoring regulations state that an appropriate statistical
method for evaluating compliance (for cleanup levels based on chronic or carcinogenic effects)
is "a procedure in which a confidence interval for each hazardous substance is established from
site sampling data and the soil cleanup level is compared to the upper confidence level [WAC
173-340-740(7)(d)(i)], and "statistical tests should be performed at a Type I error level of 0.05"
[WAC 173-340-740(7)(e)(Q)]. Thus, for soils, compliance monitoring requires estimating the 95-
percent confidence interval about the mean, and comparing this value to the cleanup level.

The method for determining whether an exposure unit meets the cleanup level is to compare
the upper confidence limit (UCL) of the site data with the cleanup level. This method should
be used for most cleanups; the tolerance interval method (Section 5.2.2) should be used when
the cleanup level is based on short-term or acute toxic effects on human health or the environ-
ment. The procedure for calculating the UCL is discussed below.

5.2.1.1 Normally Distributed Data—The sample mean determined from a set of samples
from a normal distribution provides a point estimate of the population mean. Different
compliance monitoring data sets from the same site would usually result in somewhat different
sample mean values. This indicates that the sample mean itself has a probability distribution.
Confidence intervals for the mean are based on the distribution of the sample mean. The sample
mean follows a Student’s t distribution.

One-sided confidence interval values for the Student’s t parameter are provided in Table A-
4. The procedure for calculating a one-sided upper confidence limit for the mean for data from
a normal distribution is as follows:

1. Calculate the mean (X) and standard deviation (s) of the compliance monitoring data.

2. In Table A-4, look up the appropriate t value. For a one-sided 95-percent confidence
interval (a« = 0.05), the column headed .05 is used. The t value is determined by
finding the row corresponding to the degrees of freedom (df), which is one less than
the number of samples, n.
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df =n-1

3. The upper confidence limit (UCL) for the mean is

s

UCL =X +t,_ =
where
X = sample mean
s = sample stahdard deviation
n - = number of compliance monitoring samples
t = value of the t parameter from Table A-4, based on a one-sided « of 0.05 and

n-1 degrees of freedom.

5.2.1.2 Lognormally Distributed Data—A method for calculating the upper one-sided
confidence limit for the mean of a lognormal distribution is provided by Land (1971, 1975).
This method is also described in Gilbert (1987). The procedure uses statistics calculated from
the log.-transformed sample data from a lognormal distribution, as well as a parameter, H,
determined from tabled values. '

For a 95-percent one-sided confidence interval (¢ = 0.05), the upper confidence limit is
calculated by

UCL = exp(¥ + O.Ssy2 + _s_ylj';”)
n-1

where

exp = e raised to the indicated power

y = mean of the log.-transformed data

s, = standard deviation of the log.-transformed data
n = number of compliance monitoring samples
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o = significance level (0.05)
H = tabled H value from Figure A-1 (in the Appendix).

The value of the parameter H depends on the number of compliance monitoring samples,
n, and on the variability of the sample data, measured by the standard deviation of the log.-
transformed data, s,. Land (1971, 1975) provides tabled H values.

Figure A-1 in Appendix A and Supplement S-2 give nomographs of selected H values for
calculating one-sided 95-percent upper confidence limits for the lognormal mean. The
approximate values that can be read off that nomographs will often support a determination of -
whether the UCL on the lognormal mean is greater than or less than the cleanup standard. For
more accurate H values, tabled values (Land 1971, 1975) should be consulted. Land (1975)
indicates that cubic interpolation (four-point Lagrangian interpolation) should be used to
interpolate additional H values from the tables; however, this is complex, and in practice, the
simpler linear interpolation will often suffice.

Detailed instructions for calculating the one-sided 95-percent upper confidence limits for the
lognormal mean using Land’s method are provided in Worksheet W-2.

5.2.1.3 Other Distributions with Large Sample Size—[Requires consultation with
Ecology.] If compliance monitoring data indicate that both the normal and lognormal distribu-
tions should be rejected (e.g., by the W test), it may be possible to find another known
distribution that is not rejected by an appropriate goodness-of-fit test. There may be procedures
in the statistical literature for estimating upper confidence limits for the mean of those other
known distributions, or for defined transformations of the distributions. If such methods exist,
they may allow calculation of a UCL for the mean of the compliance monitoring data.
Generally, however, compliance monitoring data that are neither normal nor lognormal will not
have explicit methods for calculating a UCL for the mean. In most cases, the distribution of the
data may be unknown.

A method providing approximate one-sided upper confidence limits for the mean for
"sufficiently large sample sizes," n, from any distribution is based on the normal distribution and
is described in Gilbert (1987; see p.139). As Gilbert (1987, p. 140) states, "There appears to
be no simple rule for determining how large n should be for [this equation] to be used. It
depends on the amount of bias in the confidence limits that can be tolerated and also on the
shape of the distribution from which the data have been drawn. If the distribution is highly
skewed, an n of 50 or more may be required."

The approximate one-sided upper 95 percent confidence limit for the mean is calculated by

UCL=%X+2__5
n

56



where

%X = sample mean-
7
s = sample standard deviation
n = number of compliance monitoring samples
Z,, = value of the Z parameter from the normal distribution for

a defined o level. For a one-sided upper 95 percent
confidence limit, a value for Zss determined from Table
A-6 is 1.645.

52.14 Other Distributions with Small Sample Size —[Requires consultation with
Ecology.] In some cases, it may be apparent even from a small data set that neither the
lognormal nor normal distribution is appropriate. For example, the data may be strongly
bimodal due to the inclusion of values from a hot spot. For most sites, the number of
compliance monitoring samples per exposure unit or exposure unit for which a cleanup decision
is required will be relatively small compared to the sample size that might support use of the
approximate method described in Section 5.2.1.3 above for calculating a UCL for the mean.
Reliable statistical methods do not exist for estimating a UCL for the mean from unknown
distributions where only a small number of samples are available.

In some cases, a different statistical test (e.g., upper tolerance limit test for a percentile of
the distribution) may also be appropriate for use under the MTCA regulations, and that test
could be used in place of one based on the UCL for the mean. Procedural options if a UCL for
the mean is needed mclude the following:

1. Use the approximate procedure described in Section 5.2.1.3 even though the sample
size is small. The likelihood that a substantial bias is introduced in the UCL estimate
because of sampling error will increase as the number of samples decreases.

2. Develop a larger compliance monitoring data set for evaluation. The larger data set
would have to be collected and evaluated based on a sampling plan reviewed and
approved by Ecology. The larger compliance monitoring data set could support an
assumption of a normal or lognormal distribution where the smaller initial data set did
not; failing that, it would still result in a better approximation using the methods of
Section 5.2.1.3. The cost of additional compliance monitoring data collection should
be considered in comparison to the potential consequences of a poor site cleanup
decision based on a small sample size.

3. Evaluate an upper tolerance limit for a percentile selected on a site-specific basis by
Ecology instead of an upper confidence limit for the mean. The percentile would be

- 57



selected to reflect the approximate estimated location of the mean based on the sample
results.

Small sample sizes with single, uncomposited samples will unavoidably result in difficulties
for statistical evaluations of the likely true mean of a constituent at a site. For alternatives using
an approach with a relatively small number of composited samples, see Neptune et al. (1990)
and Ryti and Neptune (1991).

5.2.2 Evaluation of Compliance Monitoring Data Based on Upper Tolerance Limit for
the 90th Percentile

For cleanup levels based on short-term or acute threats, an appropriate statistical method
is "a parametric test for percentiles based on tolerance intervals to test the proportion of soil
samples having concentrations less than the soil cleanup level" [WAC 173-340-740-(7)(d)(ii)].
In addition, "the true proportion of samples that do not exceed the soil cleanup level shall not
be less than ninety percent. Statistical tests shall be performed with a type I error level of 0. 05"
[WAC 173-340-740-(7)(f)(ii)]. Thus, for soils, MTCA requires a 95-percent confidence interval
(Type I error level of 0.05) around the 90th percentile [WAC 173-340-740-(7)(f)(iii)].

5.2.2.1 Normally Distributed Data—Tolerance limits are defined in Section 2.1.10. An
upper tolerance limit for a percentile is much like a one-sided confidence interval for that
percentile, and tolerance limits are used within MTCA as a method of taking possible sampling
error into account (the point estimates derived from the data may not accurately reflect the
underlying population value for the percentile).

An upper tolerance limit is calculated using sample statistics for the mean (X) and standard
deviation (s) and tabled values for a parameter, k. That parameter depends on the percentile of
interest; the number of samples, n; and the "coverage" of the tolerance interval (equivalently,
the « level for the one-sided confidence interval). Values for k for calculating 95 percent upper
tolerance limits (o = 0.05) for selected percentiles of a normal distribution are given in Table
A-3. In that table, percentiles are identified by the value of P, = (1 - percentile/100). Thus,
the 90th percentile is represented by a P, value of 0.10.

An upper 95 percent tolerance limit (Ty) for the 90th percentile of the compliance
monitoring distribution is determined by

where
X = sample mean
s = sample standard deviation
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k

= value determined from table A-3 for the tolerance limit parameter, k,
with @ = 0.05, n equal to the number of compliance monitoring
samples, and P, equal to 0.10 for the 90th percentile

This method can be used only when the data are normally distributed.

5.2.2.2 Lognormally Distributed Data—Both percentiles and upper tolerance limits for
percentiles from a lognormal distribution can be estimated by first transforming the data (using
log.), calculating values on the normally distributed transformed data, and then back-transform-
ing to original units (raising e to the power of the result calculated from the transformed data).

“An upper tolerance limit for the 90th percentile of a lognormally distributed compliance
monitoring distribution is calculated as follows:

1.

2.

Transform the raw compliance monitoring data using a log, transformation.

Using the method described in Séction 5.2.2.1 above for normally distributed data,
calculate an upper tolerance limit for the transformed data. Let the result be designat-
ed as T,.

The upper tolerance limit for the 90th percentile of the lognormal distribution is then

Ty = exp(T,)
where
exp = e raised to the indicated power
T, = upper tolerance limit calculated for the log.-transformed data.

5.2.2.3 Nonparametric Methods for Upper Confidence Limit with 20 or Fewer
Samples—[Requires consultation with Ecology.] Regardless of the form of the distribution,
nonparametric methods can be used to estimate an upper confidence limit for percentiles of the
distribution. For sample sizes of 20 or fewer, a method described in Conover (1980) can be
used. That method is discussed in this section. For sample sizes greater than 20, a method
~ described in Gilbert (1987) can be used. It is described in the next section.

For sample sizes less than 20:

1.

Use Table A-5 to find tabled values for b at approximately /2 and 1-a/2. The
method for using Table A-5 is to read across the table for the percentile of interest (in
this case, p = 0.90), and down the left-hand column for the value of n. Then move
down the entries corresponding to different y values (which refer to the number of

59



occurrences of a binomial variable in N trials) until the entry in the table (b) is
approximately equal to «/2. find the corresponding value of y in the far left column.
Add 1 to this value to get 1.

Continue down the column until you reach an entry approximately equal to 1-c/2.
Find the corresponding value of y in the far left column. Add 1 to this y value to get
.

Order the data from smallest to largest, and assign a rank (y value) to each value. If
two or more data points have the same value, order them consecutively, and assign
each its own rank. Determine the data value corresponding to s and r. These values
represent the upper and lower confidence limits about the percentile of interest.

Compare the upper confidence interval with the cleanup standard. If the upper
confidence limit is greater than the cleanup standard, the site is considered to be
contaminated.

Example 15 provides a numerical demonstration.

5224 Nonparametric Methods for Upper Confidence Limit with More Than 20
Samples—[Requires consulation with Ecology]l For sample sizes greater than 20, a nonparam-
etric method described by Gilbert (1987, p. 142) can be used to estimate one-sided upper

confidence limits:
1. Find the value for Z,_, in Table A-6, where Z, , = percentile of normal distribution.
2. Calculate
u =p@+1) + Z,_[op(l - p)I'?

where

u = rank of upper confidence limit

p = percentile

n = number of samples.
3. Order the data from smallest to largest, and assign a rank to each value.
4. If uis an integer, then the data value corresponding to that rank is the upper confi-

dence limit. If u is not an integer, the limit must be obtained by linear interpolation
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between the two closest values. See Example 5 for a demonstration of linear
interpolation.

5. Compare the upper confidence interval with the cleanup standard. If u is greater than
the cleanup standard, the site is still considered to be contaminated.

523 Additional Requiremehts for Determining if a Site is Clean

In addition to comparing site data to the cleanup standard, there are two other requirements
that must be met before a site can be determined to be "clean" [WAC 173-340-740(7)(e) and

(O]:

1. No single sample concentration shall be greater than two times the soil cleanup level.
2. Less than 10 percent of the sample concentrations shall exceed the soil cleanup level.

For background-based cleanup standards, the adjustments to these criteria (discussed in Section
4.3) should be considered.

5.3 COMPARING SITE DATA TO GROUNDWATER CLEANUP STANDARDS
(EXAMPLE 17)

Statistical requirements for groundwater [WAC 173-340-720(8)] are similar to those for soil,
except that the parametric method for percentiles requires a 95 percent confidence interval on
the 50th percentile (i.e., the median). Note also that compliance with a cleanup standard must
be determined for each well or monitoring point [WAC 173-340-720(8)(c)(iv)], while compliance
decisions for soil are normally based on combined data from different sampling points.

5.3.1 Normally Distributed Data

For a normal distribution, the median is equal to the mean. Therefore, the methods
described in Section 5.2.1.1 for estimating a one-sided upper confidence limit of the mean can
be used to evaluate compliance monitoring data based on the median.

5.3.2 Lognormally Distributed Data [Requires consultation with Ecology.]

A method for estimating the approximate two-sided confidence interval for the true median
of a lognormal distribution is given by Gilbert (1987; see p. 173).

An upper confidence limit for the 100(1-«) percent two-sided confidence interval for the
median of a lognormal distribution is calculated using the log.-transformed compliance
monitoring data. First calculate the arithmetic average and standard deviation of these
transformed data, y and s,, respectively. The one-sided upper 95-percent confidence limit is
then estimated, using o = 0.10 for the two-sided equation given in Gilbert (1987), by:
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UCL = exp(¥)exp(t

1-a,n-1

Sy)
[__

n

where
exp = e raised to the indicated power
y = mean of the log,-transformed data
s, = standard deviation of the loge—@sfomw data
t = tabled value of the t distribution from Table A-4 (note that since this is -

a one-sided table, the column heading at o 0.05 level is used)
n = number of samples.

~ As discussed in Gilbert, this estimate is biased high, but the amount of bias decreases with
increasing sample size and is generally small unless the skew of the lognormal distribution (i.e.,
its coefficient of variation) is very large.

533 Nonparametric Method for Upper Confidence Limit [Requires consultation with
Ecology.]

A nonparametric method for providing confidence limits for the median of any continuous
distribution is provided by Van der Parren (1970; see Appendix A). This method can be used
regardless of the distribution of the compliance monitoring data. It provides confidence intervals
that are equal to selected ranked data values; the confidence interval coverage is approximate
rather than exact.

- To determine an upper confidence limit for the two-sided confidence interval for the
population median, the following procedure is used:

1. Sort the data from lowest to highest values and assign ranks, increasing with
concentration. _

2. From Table A-7 (extracted from the original Van der Parren reference for
« equal to 0.05) find the value of j, the rank corresponding to the estimated
upper confidence limit, for the sample size n.

3. Determine the concentration for the j®-ranked compliance monitoring data

value.
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4. That concentration is an estimated upper confidence limit for an approximate
a level of 0.05. The actual « level can be determined from tabled values
given in the Van der Parren reference (attached in Appendix A).

Other tests are discussed Gilbert (1987, Chapters 11, 16, and 17) and may be appropriate
for confirmatory analysis.

534 Additional Requirements for Determining if a Site is Clean

There are two other requirements that must be met before groundwater at a site can be.
determined to be "clean" [WAC 173-340-740(7)(e) and (f)]:

1. No single sample concentration shall be greater than two times the groundwater
cleanup level.

2. Less than 10 percent of the sample concentrations shall exceed the groundwater
cleanup level during the representative sampling period.

For background-based cleanup standards, the adjustments to these criteria (discussed in
Section 4.3) should be considered.

Figure 15 shows the relation between these requirements using a hypothetical probability
distribution from a site. This figure shows that the site data meet two of the three requirements
for the site to be considered clean: the 95-percent CI on the median is below the cleanup
standard, and no single sample concentration is greater than two times the cleanup level.
However, 15 percent of the sample concentrations exceed the cleanup standard. Therefore, the
site does not meet all three criteria and must be considered contaminated.

5.3.5 Additional Considerations for Groundwater

The following topics are not described in MTCA, but are discussed here because they may
be significant issues at some sites. If it appears that these issues are relevant to a site, and the
discussion here is not sufficient, additional assistance should be obtained from references listed,
a statistician, or Ecology. '

5.3.51 Trends—Groundwater is typically monitored for two purposes: 1) to determine
contaminant concentrations of potentially impacted groundwaters relative to non-impacted
(background) groundwater, and 2) to determine trends in concentrations with time or location,
or both. Statistical methods must be applied to determine if temporal or spatial variability in
contaminant concentrations is significant. If significant variations are detected, statistical
methods can be applied to determine if the variations indicate verifiable trends.
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FREQUENCY '9

SAMPLE MEAN

' UPPER 95% CI| ON MEAN
A K
POST-REMEDIATION | }
SITE DISTRIBUTION |
DATA »—_—ul
|
| 15% of COMPLIANCE
| MONITORING
{ DATA
|
l
|
|
I
|
|
|
|
|
|
|
|
[
i |
CONCENTRATION == CLEANUP Py MAX =
, STANDARD 1.5 times
STANDARD

In this example, the site meets only two of three criteria.

1) Is the upper Cl on the mean less that the cleanup standard? Yes.

2) Is the maximum compliance monitoring value less than 2x standard? Yes.

3) Are 10 percent of the data above standard? No. 15 percent of the data are
above standard. The site is not clean enough.

Figure 15. Conceptual basis for answering the question "Is the groundwater
at the site clean enough?"
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Contaminant concentrations measured at one location may vary naturally with time. This
variation may be entirely random, it may follow a predictable trend or cycle, or it may have a
random distribution superimposed upon a predictable trend or cycle. Variability in contaminant
concentrations may be due to cyclic or non-cyclic changes in water-table elevations (tides, river
stage changes, precipitation, and seasonal changes in infiltration rates and temperatures).
Changes in concentrations may indicate effects of an onsite release, or they may reflect natural
or anthropogenic regional changes.

To evaluate temporal trends (steady increases or decreases in contaminant concentrations),
upgradient monitoring should be performed over a period of at least one year, because regression
methods can yield misleading data when only a portion of an annual cycle is considered.
Therefore, it is important for data to be collected over a period sufficient to establish cyclical
trends. Occurrence of trends can be determined by plotting analyte concentrations vs. time and
- visually inspecting the plot to determine whether seasonal fluctuations are apparent. In addition,
‘a linear regression can be fitted to contaminant concentrations vs. time, and a #-test performed

to determine if the slope of the regression line is significantly different than zero (Gilbert 1987).
Although it was previously stated that the z-test is not usually applicable at MTCA sites because
it is inconsistent with the null hypothesis that the "site exceeds cleanup levels," it is applicable
in this instance because the null hypothesis is that the slope of the line is not different from zero.
This null hypothesis can be tested using conventional statistical methods. The z-test is described
in many introductory statistical textbooks.

If seasonal trends are present in the data, it is critical that background contaminant
concentrations measured during a particular period are compared to downgradient data from the
same period. For example, suppose concentrations of a particular contaminant tend to decrease
in the summer and increase in the winter. If the background concentrations are measured in the
summer, and then compared to onsite concentrations measured in the winter, it may appear that
the site is contaminated when the data really reflect only seasonal variation. Clearly this is not
desirable, because remediation could be required on a site that is, in fact, "clean."

5.3.5.2 Serial Correlation—Most standard statistical tests assume that the data are
independent. This means that there is no correlation between the data: that the chance of
measuring a high or low concentration in a well is the same for each well at all times.
However, if a well is sampled one day and then sampled again the next day, it is likely the
concentration will be similar for each day. This is known as serial correlation—the linear
dependence between observations in time. Even wells sampled on a quarterly basis can exhibit
serial correlation (Montgomery et al. 1987). Such data violate the assumption of independence,
without which the use of many statistical techniques may be precluded. A thorough discussion
of serial correlation is beyond the scope of this document. However, Montgomery et al. (1987)
suggest using statistical techniques that are insensitive to serial correlation or averaging the data
over time periods sufficiently large that the serial correlation is insignificant. They also describe
methods for determining whether data are serially correlated, which would indicate the length
of a "sufficiently large" time period. If serial correlation appears to be a problem at a particular
site, further statistical assistance should be sought.
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5.3.5.3 Period of Time for Determining Background Concentrations—The period of
time must be defined during which upgradient (background) data will be used for comparison
with data collected onsite. The period considered may be prior to operation of the site or the
start of onsite monitoring. It may also be a moving window (e.g., as one year prior to each
monitoring event). In some cases, use of all available background data is the preferred method,
because the environment is protected from short-run fluctuations that may dominate a moving
window, while the potentially liable person (PLP) is likely to have increased confidence in the
- interpretation afforded by an increased size in the background data set (Gibbons 1990).
However, use of all data may decrease the power to detect increases in groundwater contamina-
tion. The decision to use all or part of the data should be based on a consideration of the
consequences of each detection.

54 COMPARING SITE DATA TO SURFACE WATER STANDARDS

MTCA states that when "surface water cleanup levels are based on requirements specified
in applicable state and federal laws, the procedures for evaluating compliance that are specified
in those requirements shall be utilized to evaluate compliance with surface water cleanup levels
unless these procedures conflict with the intent of this section" [WAC 173-340-730(7)(d)].
"Where procedures for evaluating compliance are not specified in an applicable state and federal
law, the statistical methods used to evaluate compliance with surface water cleanup levels shall
be appropriate for the distribution of the hazardous substance sampling data" [WAC 173-340-
730(7)(e)]. The confidence interval and tolerance interval procedures described above are
appropriate tests. The tolerance interval procedure, however, requires a decision about the
percentile to be used and can be used only with normally distributed data. If the data are not
normally distributed, transformation (e.g., by converting to logarithms) may correct this.
Alternatively, the groundwater guidance document cited above includes a nonparametric test for
proportions (U.S. EPA 1988, p. 5-21) that does not require normally distributed data. Other
tests described in that guidance document, such as regression analysis, may be useful in
sitnations where surface water contaminant concentrations are changing over time.

5.5 COMPARING SITE DATA TO AIR QUALITY STANDARDS

Requirements are given in WAC 173-340-750(7). Consult staff in the Department of
Ecology Air Program for technical assistance.
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6. GEOSTATISTICS [RESERVED]
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8. EXAMPLES
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EXAMPLE 1

CALCULATION OF ARITHMETIC MEAN

We want to calculate the arithmetic mean, X, of the following data set:

44 80 101 122
55 | 85 105 129
68 91 110 133
72 94 115 139
76 | 97 119, 167

1. Calculate the sum of all the values:
44 + 55 + ... + 139 + 167 = 2,002

2. The arithmetic mean is the sum divided by the number of samples, n. In this case, n = 20,
and '

x = 2,002/20 = 100.1.
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EXAMPLE 2

CALCULATION OF GEOMETRIC MEAN

- We want to calculate the geometric mean of the data set in Example 1.

1. Transform the data by taking the natural logarithm (base e) of each value. The log-
transformed data are listed below:

3.78 _ 4.38 4.62 4.80

4.01 4.44 4.65 4.86
4.22 4.51 4.70 4 4.89
4.28 . 4.54 4.74 4.93
4.33 4.57 4.78 5.12

2. Calculate the sum of the >|og-transformed data values
3.78 + 4.01 + ... + 4.93 + 5.12 = 91.15.
3. Calculate the arithmetic mean of the log-transformed values (the sum divided by the number
of samples, n). In this case, n = 20, so the arithmetic mean of the transformed values is
91.15/20 = 4.558.
4. The geometric mean is the exponent of the mean calculated in Step 3.'
exp(4.558) = %8 = 95 4.
In this case, the geometric mean is relatively‘ close to the arithmetic mean calculated in Example
1. This is because the data were derived from a normally distributed population. If the data

were significantly skewed, the geometric mean would be substantially different from the
arithmetic mean. :
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EXAMPLE 3

METHOD FOR CALCULATING THE MEDIAN OF A DATA SET

-

Suppose we want to estimate the median of the data set from Example 1.

1. The 20 data are sorted from smallest to largest, and a rank is assigned to each value.

Data Rank
44 1
55 2
68 3 i
72 4
76 5
80 6
85 7
91 8
94 9
97 10
101 11
105 12
10 13
115 14
119 15
122 16
129 17
133 18
139 19
167 20

2. Because the sample size, n, is even, the sample median estimate is the average of the
n/2th and the (n+2)/2th values. In this case the sample size is 20, the sample median
estimate is the average of the 20/2 = 10th and the [(20+2)/2] = 11th ranked values.

3. For this data set, the 10th ranked valué is 97 and the 11th ranked value is 101. The
median is the arithmetic average of these two points:
(97 + 101)/2 = 99.
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EXAMPLE 4

ESTIMATING A PERCENTILE OF A DATA SET
FROM A PROBABILITY PLOT

Twenty soil samples from a site are analyzed for lead, and the following concentrations (ppb) are
obtained: »

276 179 138 162
206 114 220 131
242 136 157 180
167 165 226 245
146 183 201 193

We want to estimate the 50th percentile (median) and 90th percentile of the data set using a
probability plot. Assume the data set has been tested for lognormality and normality, and it
appears that the data have been drawn from a normal distribution. The 20 data are sorted from
smallest to largest, and a rank is assigned to each value. In addition, for each data point estimate
(i - 0.5)100/n, where i is the rank of the data point.

Datav Rank (i-0.5)100/n Data Rank (i - 0.5)100/n
114 1 2.5 180 11 52.5
131 2 7.5 183 12 57.5
136 3 12.5 193 13 62.5
138 4 17.5 201 14 67.5
146 5 22.5 206 15 72.5
157 6 27.5 220 16 77.5
157 7 32.5 226 17 82.5
162 8 37.56 242 18 87.5
165 9 42.5 245 19 92.5
179 10 47.5 276 20 97.5

2. Because in this case we assume that data are normally distributed, we plot x vs. (i - 0.5)100/n
on normal probability paper (contained in this document), as shown below. .A straight line is fit
to the data by eye, which fits the data reasonably well, indicating that the data are drawn from
a normal population.
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Example 4. (Continued)
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Figure E4. Example of a probability plot.
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Using the line, we can read the 50th and 90th percentiles from the plot, by reading across
the cumulative percent along the horizontal axis to-50 and 90. Using this technique, the
50th and 90th percentile are estimated to be approximately 179 ppb, and 242 ppb. This
agrees reasonably well with the median of 179.5 estimated by the method shown in
Example 3. A nonparametric method for estimating the 90th percentile is shown in Example
5. '

Note:

If the data set contained some data below the detection limit or PQL, the data above the
limit could be plotted, and a line fit to the remaining data points to estimate upper
percentiles.
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EXAMPLE 5

NONPARAMETRIC (DISTRIBUTION-FREE) METHOD FOR CALCULATING
PERCENTILE OF A DATA SET (Section 2.1.2.3)

Using a nonparametric method, we wish to estimate the 90th percentile of the lead concentra-
tion data set in Example 4.

1. The 20 data are sorted from smallest to largest, and a rank is assigned to each value.

_ Data " Rank

Data Rank
114 1 180 11
131 2 183 12
136 3 193 13
138 4 201 14
146 5 206 15
157 6 220 16
157 7 226 17
162 8 242 18
165 9 245 19
179 10 276 20
V‘TSF (n+1)
where
p = percentile
n = number of samples

v = rank of pth percentile data

_ 90 -
- —55- (20+ 1) =189

-3. Since v is not an integer, the 90th percentile must be found by linear interpolation between the
18th and 19th ranked data, 242 and 245, respectively.

4. The linear interpolation is performed as follows:

The difference between the rank values is calculated: 19 -18 = 1

The difference between v and the lower rank value is calculated: 18.9 - 18 = 0.9
The ratio between the values calculated in steps a and b is found: 0.9/1 = 0.9
The difference between the data values is calculated: 245 - 242 = 3.

The ratio in ¢ is multiplied by the difference between the data values: 0.9 (3) = 2.7
This value is added to the lowest data value: 242 + 2.7 = 244.7.

hfOo Q0T

Thus, the 90th percentile of the data set is 244.7.
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EXAMPLE 6

CALCULATION OF VARIANCE, STANDARD DEVIATION, AND COEFFICIENT OF
VARIATION

We want to calculate the sample variance, s?, of the following concentrations (x,) in mg/kg : 2.4,
4.4, 6.5, 6.7, and 8.2.

The arithmetic mean, X, calculated as described in Example 1, is 5.64. The
equation for calculating the variance is

z (x - X)?
s? =

n-1
where n is the number of samples. In this example, n = 5, so the denominatoris 5 -1 = 4.

Thus, the sample variance can be calculated as

(2.4 -5.64)2 + (4.4 - 5.64)? + (6.5 - 5.64)% + (6.7 - 5.64)2 + (8.2 - 5.64)2
s? =

4
s? = 5.11 |
The standard deviation, s, is the square root of the variance:
s = v5.11 = 2.26.

The coefficient of variation, CV, is calculated by:

S
CV = —
X
2.26
CV=—— =.040
5.64

NOTE: This calculation method should not be used for som\’e purposes. See Supplement S-5.
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» EXAMPLE 7
W TEST FOR TESTING THE NORMALITY OF A DATA SET

The data from the 20 soil samples in Example 4 will be tested for normality by the W test
{Shapiro and Wilk 1965). These data could be tested for lognormality by log-transforming the
date, and then performing the same test on the transformed data.

1. The number of samples, n, is 20. The calculated mean, X, of the data is 182.85.

2. The 20 data are sorted from smallest to largest, and a rank is assigned to each value

Data Rank Data Rank
114 1 180 11
131 2 183 12
136 3 - 193 13
138 4 201 14
146 5 206 15
157 6 220 16
157 7 226 17
162 8 242 18
165 9 245 19
179 10 276 20

3. The denominator d is calculated for the data:

d = (114 - 182.85)* + (131 - 182.85)%> + (136 - 182.85)* + (138 - 182.85)* +
(146 - 182.85)? + {157 - 182.85)* + (157 ~ 182.85)® + (162 - 182.85)* +
(165 - 182.85)* + (179 - 182.85)* + (180 - 182.85)*> + (183 - 182.85)* +

- (193 - 182.85)2 + (201 - 182.85)® + (206 - 182.85)*> + (220 - 182.85)% +
(226 - 182.85)> + (242 - 182.85)* + (245 - 182.85)% + (276 - 182.85)?
d = 35,355

4. Calculate r, the number of a, coefficients used in the calculation.
Since nis even, r = 20/2 = 10

5. From Table A-1, the a, coefficients for n = 20 are:

a, = 0.4734 ag = 0.1334
a, = 0.3211 a;, = 0.1013
a; = 0.2565 a; = 0.0711
a, = 0.2085 3, = 0.0422

a; = 0.1686 a,o = 0.0140
6. W is calculated as follows: |
W = (1/35,355)[0.4734(276 — 114) + 0.3211(245 — 131) + 0.2565(242 - 136)] +
0.2085(226 — 138) + 0.1686(220 — 146) + 0.1334(206 — 157) + 0.1013(201
- 157) + 0.0711(193 - 162) + 0.0422(183 - 165) + 0.0140(180 — 179)F

W = 0.97
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Example 7. (Continued)

7. Using Table A-2, the value of W for the significance level @ = 0.05 is 0.905. The value for
W calculated in Step 6 above (0.97) is greater than the value in Table A-2, so the null
hypothesis that the population is normally distributed cannot be rejected, and the data
should be assumed to have been drawn from a normal distribution. '

NOTE: If calculating W by hand, use Worksheet W-1 or W-1a.

{
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EXAMPLE 8

TRANSFORMATION OF LOGNORMALLY DISTRIBUTED DATA

The following groundwater concentrations of a contaminant (mg/l) have been measured at a site: -

82 151 75 | 105
61 68 100 123
95 74 126 85

136 163 112 89
59 99 108 88

1. A histogram of the data suggests that they may be lognormally distributed (Figure 5a).

2. To test the lognormal assumption, the data are log-transformed (log.).

4.41 5.02 4.32 4.65
4.11 4.22 : 4.61 . | 4.81
4.55 4.30 4.84 4.44
4.91 5.09 4.72 4.49
4.08 4.60 4.68 4.48

A histogram of the transformed values (Figure 5b) indicates that they are normally distributed.
This suggests that the data are lognormally distributed. Note that the histogram method for
determining normality or lognormality is subjective and depends on the intervals chosen for the
graph. It is used here to illustrate lognormal transformations. In practice, a probability plot or
other test (e.g., W test) should be used to determine normality or lognormality (see Supplement
S-3).

82



EXAMPLE 9

PARAMETRIC AND NONPARAMETRIC METHODS DETERMINING WHETHER A
CLEANUP STANDARD IS BELOW NATURAL BACKGROUND - NORMALLY DISTRIBUTED
' ' DATA ’

The cleanup standard for kryptonite ih soil is 115 mg/kg, based on Method B of the MTCA
regulations. The PLP collects 20 samples from locations determined to be natural background.
Is the Method B cleanup standard below natural background?

The background data are:

110.28 107.11 61.56 91.81 89.08
116.32 20.06 112.84 101.87 64.52
124.14 91.80 . 50.28 97.04 91.65

111.94 78.54 110.17 80.78 155.19

Background data are assumed initially to be lognormally distributed (see the discussion in Section 4.3
and the flowchart for determination of cleanup standards based on background, Figure 12). To check
the lognormal assumption for the kryptonite background data, the W test (see Example 7) will be used.
As discussed in Section 2.1.4.1, the W test is designed as a test of the hypothesis that the data are
from a normal distribution. However, it can be used to test the hypothesis of a lognormal distribution
by first transforming the raw data using natural logarithms, and then calculating and evaluating the W
statistic using the transformed data as shown in Example 7. '

The W statistic for the transformed data is calculated to be 0.792. The critical value at the 0.05 level
for a sample size of 20 is determined from Table A-2 to be 0.905. Since the calculated value for W
is less than the critical value, the null hypothesis that the data are lognormal is rejected. The PLP then
decides to determine if the data are normally distributed. The W value calculated on the raw
(untransformed) data is 0.958, which exceeds the critical value of 0.905, so the null hypothesis that
the data are normally distributed is not rejected.

The default procedure establishing the background-based cleanup standard at the 90th percentile of
the estimated distribution is based on the assumption of a lognormal distribution. In cases where the
assumption of a lognormal distribution is rejected, as in this example, Ecology should be consulted on
appropriate alternative procedures to establish the cleanup standard. The 90th percentile concentration
should not be used without consulting Ecology. For this example, assume that Ecology has determined
that the cleanup standard should be based on the estimated 80th percentile concentration.

The 80th percentile then can be estimated using a table of standard normal values (see Table A-6) as
follows:

Xgo = X + ZgoS
and, since

x = 93.34

s = 29.33
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Example 9. (Continued)

and from Table A-6

Z,, = 0.842
then

93.34 + 1.282(29.33)

Xgo

118.04 mg/kg

This procedure assumes a normal distribution for the background samples to estimate the 80th
percentile value. Since that estimate, about 118 mg/kg, is greater than the Method B cleanup standard
of 115 mg/kg, the Method B value is below natural background.

Now, assume that we wish to estimate the 80th percentile value of the background distribution using
nonparametric methods as in Example 5.

First, the 20 background values are ranked from lowest to highest:

20:06 97.04
50.28 101.87
61.56 ' 107.11
64.52 110.17
78.54 110.28
80.78 111.94
89.08 112.84
91.66 116.32
91.80 124.14
91.81 1565.19

Then the 80th percentile is estimated as in Example 5, as follows:

p
k = —— (n+1) = 0.80(21) = 16.8
100
and interpolating between the 16th and 17th ranked values, 111.94 and 112.84,

Xso = 111.94 + 0.8(112.84 - 111.94)

Il

111.94 + 0.72

112.66 mg/kg
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Example 9. (Continued)

Since this estimate of the 80th percentile of the background data is less than the 115 mg/kg from
Method B, the Method B cleanup standard is not below natural background.

This example demonstrates that the method of estimating the 80th percentile of natural background
can affect whether or not a Method A, Method B, or Method C cleanup standard is determined to be
below natural background. In this example, the difference in 80th percentile values from parametric
and nonparametric approaches is not great; in other cases it may be much greater, and either approach
can produce the higher estimated 90th percentile value. In this case, because the background-based
cleanup standard is so close to the Method B standard, and the parametric and nonparametric methods
result in different decisions, it would be wise to collect more background samples.

In general, the first (parametric) method shown here should be used unless the data deviate
significantly from normal and lognormal distributions. [f the data are lognormalily distributed, as
assumed in the default procedures and typically expected for most environmental data, see Example
10. Consult Ecology before using the nonparametric method.
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EXAMPLE 10

PARAMETRIC AND NONPARAMETRIC METHODS DETERMINING WHETHER A CLEANUP
STANDARD IS BELOW NATURAL BACKGROUND - LOGNORMALLY DISTRIBUTED DATA

The cleanup standard for ubiquinite in soil is 175 mg/kg, based on Method B of the regulations.
The PLP collects 20 samples from locations determined to be natural background. Is the
Method B cleanup standard below natural background?

The background data (rank-ordered) are: '

42 .78 95 122
61 81 98 132
66 v 83 _ - 104 : 138
69 85 109 : 212
71 90 114 286

The assumption that the background data are from a lognormal distribution is evaluated using the W
test (see Example 7). The W test is used to evaluate a null hypothesis that background values are
lognormally distributed by transforming the raw data using natural logarithms and then calculating the
W statistic, as in Example 9. For the log-transformed ubiquinite data listed above, the W statistic is
calculated to be 0.953; since that value is greater than the critical value of 0.905 (at the 0.05 level)
from Table A-2, the null hypothesis is not rejected, and a lognormal distribution is assumed.

If the lognormal null hypothesis is not rejected, it is not necessary to test other distributions.

The 90th percentile of the lognormally-distributed background data can be estimated by transforming
the raw data using logarithms, estimating a 90th percentile value using a table of standard normal
values (see Table A-6), and then back-transforming to original units (appropriate for percentiles, but
not for means!), as follows: '

Transform the raw data using logarithms, with y, = logx;:

3.738 4.357 4.554 4.804
4.111 o 4.394 4.585 ' 4.883
4.190 4.419 4.644 4.927
4.234 4.443 4.691 5.357
4.263 4.500 4.736 ~ 5.656

The 90th percentile of the transformed (normal) data can be estimated as in Example 9:
Yoo = ¥ + ZgoS,
The mean and standard deviation of the transformed data are:
= 4.574
= 0.429

and from Table A-6

Zoo = 1.282.
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Example 10. (Continued)

Then
Yoo = 4.574 + 1.282(0.429)

= 5.124

Finally, transform back to the original units:

Xgo = €%12* = 168.0
This procedure uses the assumed lognormal distribution for the background samples to estimate the
90th percentile value. Since that estimate, 168.0 mg/kg, is less than the Method B cleanup standard

of 175 mg/kg, the Method B value is determined not to be below natural background.

Now assume that we wish to estimate the 90th percentile value of the nontransformed background
distribution using nonparametric methods, as in Example 5.

The 90th percentile is estimated as in Example 5, as follows:

k = p/100 (n+1) = 90/100 (21) = 18.9

and interpolating between the 18th and 19th ranked values, 138 and 212,

138 + 0.9(212 - 138)

1

Xg0

]

138 + 66.6
= 204.6

Since this estimate of the 90th percentile of the background data is greater than the 175 mg/kg from
method B, the Method B cleanup standard is determined to be below natural background.

As in Example 9, this example demonstrates that the method of estimating the 90th percentile of
natural background can affect whether or not a Method A, Method B, or Method C cleanup standard
is determined to be below natural background. In this example, the nonparametric estimate of X, g
is substantially higher than the parametric estimate. The first (parametric) method shown here should
be used unless the data deviate significantly from normal and lognormal distributions. Consult Ecology
before using the nonparametric method.
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EXAMPLE 11

EVALUATION OF SOILS COMPLIANCE MONITORING DATA

The Method B cleanup standard for a contaminant, Pesticite, in soils is 2.5 yg/kg. Assume that
Pesticite is widely distributed in areas near the site (a pesticide distribution facility) from normal
agricultural practices, unrelated to any site-specific releases. Appropriate and representative area
background samples are collected and analyzed. It is determined from those samples that the
assumption of a lognormal area background distribution is not rejected (at the 0.05 level) and that
the estimated 90th percentile concentration of area background is 30 yg/kg. Then the Method B
cleanup standard is less than area background, and a Method C standard equal to the 90th
percentile of area background, 30 ug/kg, is selected in accordance with the default procedures
discussed in section 4.3.

A compliance monitoring data set of 15 samples is collected and analyzed for Pesticite after site
remediation activities are performed. Can the site be considered clean?

Assume the monitoring data are as follows:

ND (<5) 16 25
5 19 29
6 21 30
8 21 32
12 24 38

The W test (see Example 7) is used to evaluate the null hypothesis that the compliance monitoring data
are from a lognormal distribution. The W statistic is calculated assuming a value of 2.5 ug/kg (one-half
the detection limit) for the one not-detected (ND) value. The goodness-of-fit test for a lognormal
distribution is performed by transforming the raw data using natural logarithms (log,), as in Example
10. The calculated W statistic is 0.888, which is slightly greater than the critical value of 0.881 for
a 0.05 test with 15 samples (see Table A-2). Therefore, the null hypothesis of a lognormal distribution
is not rejected.

Although the W test cannot reject a lognormal distribution, a histogram plot of the compliance
manitoring data reveals that, subjectively, the lognormal distribution does not provide a close fit to the
data. The compliance monitoring data appear to be a combination of lognormally-distributed
background data (approximating the area background distribution) and a second distribution shifted
upward to higher concentrations compared to that background distribution. The higher values in the
compliance monitoring data set all appear to be from samples taken in an area of the site known to
have been used for storing bags of dry Pesticite mix. That area was the most contaminated at the site
before cleanup actions were taken.

Three criteria will be used to evaluate whether the site is in compliance:

1) Calculation of the upper confidence limit (UCL) on the mean, and companson of that value
to the 90th percentile of the background data

2) Frequency of exceedance

3) Magnitude of exceedances.

88



Example 11. (Continued)

CRITERION 1

Since the null hypothesis of a lognormal distribution is not rejected, the method of Land (1971, 1975)
described in Gilbert (1987) is used to calculate a one-sided 95 percent upper confidence limit on the
mean concentration of Pesticite in soil at the site. The equation for that upper confidence limit (UCL)
is as follows:

UCLes = exp(y + 0.5s,2 + SrHss
n-1

where
y = arithmetic mean of the n transformed values y;, = In x;
s, = standard deviation of the transformed data
n = the number of sampled values

Hes = tabled values from-Land (1971, 1975) determined by n and S,

The raw data are transformed using logarithms (log,):

0.916 2.773 3.219
1.609 2.944 3.367
1.792 3.045 . 3.401
2.079 ' 3.045 3.466

2.485 3.178 3.638

The values for the mean and standard deviation of these transformed data are determined (to three
decimal places): : ,

y = 2.730
s, = 0.794
The approximate value of H can be determined from the nomograph in Figure A-1 or Supplement S-2.

In this case, n = 15 samples, and s, = 0.794. Interpolating between 2.306 and 2.443, the H value
is determined to be 2.434. The UCL on the mean is then calculated using these values, as follows:

UCLss = exp(2.730 + 0.5(0.630) + 0.794(2.434)(1/[141°%))
= exp(3.562)
UCLgs = 35.2 ug/kg
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Example 11. (Continued)

The calculated UCL of 35.2 ug/kg, from the compliance monitoring data, is therefore greater than the
cleanup standard of 30 ug/kg based on the 90th percentile of area background, and the site does not
meet the applicable cleanup standard based on background. Further cleanup actions are required. In
this case, the residual soil contamination located where dry Pesticite mix was stored appears to cause
the site to fail the test. '

The exceedance of the background-based cleanup standard based on this test is sufficient by itself to
require additional cleanup actions. Two additional tests are included in the regulation to account for
the frequency and magnitude of exceedances of the background-based cleanup standard in the
compliance monitoring data. For purposes of illustration, these tests are also discussed here, although
once the test based on the UCL of the mean is failed, they would not necessarily have to be
performed. '

CRITERION 2

According to the regulation, the standard test, based on the frequency of exceedances of the cleanup
level, is that no more than 10 percent of the compliance monitoring samples exceed the cleanup level.’
However, the actual probability of having more than 10 percent of compliance monitoring samples
above the cleanup level if the site is at background concentrations is rather high, and generally
increases as the compliance monitoring sample size increases (see Technical Attachment 1 to Figure
12). For sample sizes of 20 or more and a cleanup level based on the 90th percentile concentration
of background, that probability is greater than 0.30. This is not acceptable, because even if a site is
remediated to background concentrations (obviously a "clean site"), it has a >30 percent chance of
failing this test. Therefore, an adjustment in the allowable percentage of compliance monitoring
samples above the cleanup level can be made so that the "false positive” error rate approximates 5
percent. This adjustment is made only in the case of a cleanup level based on background.

For sample sizes less than or equal to 30, an appropriate adjustment is to allow up to 20 percent of
the samples to exceed the cleanup level (see Attachment 1). Therefore, for the Pesticite site with 15
samples, the test based on frequency of exceedances would require additional cleanup actions if 4 or
more out of 15 compliance monitoring samples exceeded the cleanup level. The calculated probability
of 4 or more exceedances if the site has achieved background is 0.056 (5.6 percent). For the
compliance monitoring data reported at the Pesticite site, 2 of the 15 values exceed the cleanup level
of 30 ug/kg. The exceedance frequency is therefore 13.3 percent. Although this is greater than the
standard test criterion of 10 percent, it is less than the adjusted criterion (for the specific background-
based cleanup standard and compliance monitoring sample size) of 20 percent. The site does not fail
the test of frequency of exceedances.

CRITERION 3

The regulation states that no compliance monitoring sample be more than two times the cleanup level.
The probability of one or more samples exceeding two times the cleanup standard if the site is at
background concentrations depends on the definition of the cleanup standard (i.e., the percentile value
selected as the cleanup level), the shape of the background distribution (e.g., the coefficient of
variation [CV], defined as the standard deviation divided by the mean concentration), and the number
of compliance monitoring samples. A factor of exceedance that results in an approximate 5 percent
false positive rate can be calculated (see Technical Attachment 2 to Figure 12).
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Example 11. (Continued)

For the Pesticite site, assume that the background data are lognormally distributed with a CV of 0.7.
The probability of exceeding twice the cleanup level (the 90th percentile concentration) in 15
compliance monitoring samples (false positive probability) is about 0.123 (12.3 percent). However,
for a more acceptable rate of exceedence probability (0.05, or 5 percent), a factor of about 2.46 is
calculated (see Technical Attachment 2 to Figure 12). The exceedance factor of 2.46 means that a
sample may exceed the cleanup standard by up to 2.46x, instead of 2. Such an adjustment in the
standard criterion can be made only in the case of a cleanup level based on background.

For the compliance monitoring data reported at the Pesticite site, the maximum concentration of 38
pg/kg is only 1.27 times the cleanup level of 30 ug/kg. That exceedance factor is less than the
adjusted criterion value of 2.46 for the site. Therefore, the Pesticite site does not fail the magnitude
of exceedence (Criterion 3) test.

The compliance monitoring data for this site strongly suggest a residual hot spot of contamination
(e.g., based on the histogram of soil concentrations and their spatial pattern at the site). Alternative
statistical procedures based on distributional tests such as the Wilcoxon or Quantile tests may be
appropriate and useful in such situations (see Figure 12).
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EXAMPLE 12

DETERMINATION OF GROUNDWATER CLEANUP
STANDARDS BASED ON NATURAL BACKGROUND DATA

The Zarkle Industries site, now closed, is contaminated with the inorganic constituent Zodium,
which was used in large quantities in a manufacturing process. In particular, groundwater
concentrations of Zodium at the site are very high (mg/l levels). The Method B Cleanup standard
for Zodium in groundwater is 0.5 ug/l, based on acceptable human health risks (drinking water
ingestion). Is the Method B cleanup standard below natural background?

Several articles in the literature have noted that natural background concentrations of Zodium in
groundwater are quite variable. The PLP decides to drill monitoring wells to determine
background concentrations near the Zarkle Industries site. Sampling locations are selected
carefully and reviewed with Ecology to screen out any locations that could be influenced by site
contamination. The background results for Zodium (in ug/l) are as follows:

9.74 22.39
14.74 1.98
2.20 2.31
27.39 ‘ 0.56
0.86 ~ 75.07

The higher results are reviewed by Ecology and the PLP to confirm that they represent background
values and are not influenced by the site or other identifiable sources. No reason for rejecting the
higher results is found; moreover, these higher concentrations are consistent with previous literature
reports on Zodium. The results are accepted for determining natural background.

The assumption that the background data are from a lognormal distribution is evaluated using the W
test (see Example 7). As in Examples 9 and 10, the W test is used to evaluate a null hypothesis that
background values are lognormally distributed by transforming the raw data using natural logarithms
and then calculating the W statistic. The calculated W statistic of 0.945 is compared to the critical
value of 0.842 based on 10 samples and a 0.05 level test (Table A-2). Since the calculated W statistic
is greater than the criterion value, the null hypothesis of a lognormal distribution is not rejected, and
the data are assumed to be lognormally distributed.

The estimated 90th percentile background concentration is calculated as in Example 10. The log,
transformed data are as follows (to three decimal places only):

2.276 3.109
2.691 0.683 . ¢
0.788 0.837
3.310 -0.580
-0.1561 4.318

The mean, y, and standard deviation, s, of the log-transformed data are 1.728 and 1.632, respectively.

The 90th percentile of these log-transformed data is obtained by finding the 90th percentile value
based on the best-fit transformed normal distribution and then back-transforming (appropriate for
percentiles, but not for means!), as follows:
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Exampie 12. (Continued)

Yoo = V + ZggS,

1.728 + 1.282(1.632)

3.820

Transforming back to original units, the estimated 90th percentile of the natural background for Zodium
in groundwater is

Xgo = €°820 = 45.60 ug/l

Therefore, the Method B cleanup standard of 0.5 ug/l for Zodium is below natural background. Before
accepting the estimated 90th percentile of the natural background distribution for Zodium as the
cleanup standard, however, the distribution of background values is considered further. The estimated
90th percentile value of 45.60 ug/l is more than 91 times higher than the risk-derived Method B
standard of 0.5 ug/l.

The background data set shows considerable positive skew. The coefficient of variation (CV) of the
best-fit lognormal distribution is calculated as the standard deviation divided by mean concentration,
or about 3.65. Upper percentile values for distributions with that degree of skew are well above the
typical values around the 50th percentile of the distribution.

The 50th percentile value is easily determined. Recall that the transformed data from a lognormal
distribution are normally distributed, and the mean and 50th percentile (median) values for a normal
distribution are identical. The 50th percentile value is therefore calculated using the mean of the log-
transformed background data as follows: '

Yeo = 1.728

1]

e'’?%® = 5.63 ug/L

Xgo

The 90th percentile value of 45.60 ug/L is therefore about 8.1 times higher than the 50th percentile
value. Thus, the calculated risks at the 90th percentile are also more than 8 times higher than at more
typical background concentrations. Ecology policy is to limit the cleanup standards based on natural
background to no more than 4 times the 50th percentile background concentration. This policy
represents a balancing of acceptable exposures and risks with the probability that clean (background)
sites would fail a comparison with the cleanup standard for a site.

The cleanup standard for Zodium in groundwater at the Zarkle Industries site based on natural
background is therefore 4 times the 50th percentile value, or

Cleanup Standard = (4) (5.63)

=22.52 ug/L
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Example 12. (Continued)

This cleanup standard represents a value only slightly greater than the 80th percentile of the
background distribution. The estimated percentile can be calculated by determining the Z value of a
normal distribution that solves the equation '

log, 22.52 = y + Zs,
and then looking up that Z value in Table A-6 to determine the percentile.

The effect for this site of limiting the natural background cleanup standard to 4 times the 50th
percentile value is to adopt the 80th rather than the 90th percentile of the background distribution.
This results in a higher probability that a clean (background) site would fail the test (higher false
positive rate), balanced by almost a 50 percent reduction in the exposures that would occur at the
estimated 90th percentile of natural background.

The percentile value for the cleanup standard of 22.52 ug/l is estimated as 80.22. A test based on
the frequency of values above the cleanup standard at that percentile can be derived for a given
compliance monitoring sample size to provide an approximate 5 percent false positive rate (i.e., an
approximate 0.05 level test). Using the approach described in Technical Attachment 1 of Figure 12,
for example, the probability that 5 or more out of 10 compliance monitoring samples would exceed a
cleanup standard based on the 80.22nd percentile value is 0.031. Therefore, a test at the 0.03 level
for 10 samples would be based on not more than 40 percent of the values exceeding the cleanup level.

A test based on the maximum magnitude of exceedance can be derived similarly using the approach
described in Technical Attachment 2 of Figure 12. For example, with a compliance monitoring sample
size of 10, there is a 5-percent chance that one or more values would exceed the 99.49th percentile
if the site is at background. For a lognormal distribution with a CV of abo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>