
Technology Assessment Protocol – Ecology (TAPE)

September 2018
Revision of Publication no. 11-10-061
Publication no. 18-10-038
Publication and Contact Information

This report is available on the Department of Ecology’s website at https://fortress.wa.gov/ecy/publications/summarypages/1110061.html

For more information contact:

Water Quality Program
P.O. Box 47696
Olympia, WA 98504-7696

Phone: 360-407-6600

- Headquarters, Olympia 360-407-6000
- Northwest Regional Office, Bellevue 425-649-7000
- Southwest Regional Office, Olympia 360-407-6300
- Central Regional Office, Yakima 509-575-2490
- Eastern Regional Office, Spokane 509-329-3400

Accommodation Requests
To request ADA accommodation including materials in a format for the visually impaired, call Ecology at 360-407-6600 or visit https://ecology.wa.gov/accessibility. People with impaired hearing may call Washington Relay Service at 711. People with speech disability may call TTY at 877-833-6341.

Technology Assessment Protocol – Ecology (TAPE)

Water Quality Program
Washington State Department of Ecology
Olympia, Washington
This page intentionally left blank
Table of Contents

List of Tables ... v
Acknowledgements .. vii
Acronyms ... ix
Introduction .. 1

TAPE Program Overview .. 3
 Use level designations .. 4
 Performance goals .. 6

Preparing a Quality Assurance Project Plan (QAPP) .. 9
 Background .. 10
 Technology description .. 10
 Results of previous studies ... 11
 Project description .. 11
 Organization and schedule .. 11
 Quality objectives ... 12
 Bias .. 12
 Precision .. 13
 Representativeness .. 13
 Completeness .. 16
 Comparability ... 16

Experimental design .. 16
 Monitoring site ... 17
 Treatment system sizing .. 18
 Precipitation monitoring ... 19
 Flow monitoring .. 19
 Water sampling .. 20
 Sediment measurement and sampling .. 24
 Supplemental laboratory testing procedures ... 24

Sampling procedures .. 25
 Precipitation monitoring .. 25
 Flow monitoring .. 26
 Water sampling .. 26
 Sediment sampling .. 29

Measurement procedures ... 29
 Water sampling .. 29
 Sediment sampling .. 31

Quality control .. 32
 Field quality assurance and quality control ... 32
 Laboratory quality control ... 35

Data management procedures .. 35

Audits and reports ... 36

Data verification and validation ... 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data quality assessment</td>
<td>36</td>
</tr>
<tr>
<td>Preparing a Technical Evaluation Report (TER)</td>
<td>39</td>
</tr>
<tr>
<td>Cover letter</td>
<td>40</td>
</tr>
<tr>
<td>Executive summary</td>
<td>40</td>
</tr>
<tr>
<td>Introduction</td>
<td>40</td>
</tr>
<tr>
<td>Technology description</td>
<td>40</td>
</tr>
<tr>
<td>Physical description</td>
<td>41</td>
</tr>
<tr>
<td>Site requirements</td>
<td>41</td>
</tr>
<tr>
<td>Sizing methodology</td>
<td>41</td>
</tr>
<tr>
<td>Installation</td>
<td>42</td>
</tr>
<tr>
<td>Operation and maintenance requirements</td>
<td>43</td>
</tr>
<tr>
<td>Reliability</td>
<td>43</td>
</tr>
<tr>
<td>Other benefits or challenges</td>
<td>43</td>
</tr>
<tr>
<td>Sampling procedures</td>
<td>44</td>
</tr>
<tr>
<td>Data summaries and analysis</td>
<td>44</td>
</tr>
<tr>
<td>Storm event data</td>
<td>45</td>
</tr>
<tr>
<td>Individual storm reports</td>
<td>45</td>
</tr>
<tr>
<td>Statistical comparisons of influent and effluent pollutant concentrations</td>
<td>46</td>
</tr>
<tr>
<td>Pollutant removal efficiency calculations</td>
<td>46</td>
</tr>
<tr>
<td>Statistical evaluation of performance goals</td>
<td>47</td>
</tr>
<tr>
<td>Pollutant removal as a function of flow rate</td>
<td>48</td>
</tr>
<tr>
<td>Operation and maintenance information</td>
<td>49</td>
</tr>
<tr>
<td>Discussion</td>
<td>50</td>
</tr>
<tr>
<td>Conclusions</td>
<td>50</td>
</tr>
<tr>
<td>Appendices</td>
<td>51</td>
</tr>
<tr>
<td>Third-party review</td>
<td>51</td>
</tr>
<tr>
<td>References</td>
<td>53</td>
</tr>
<tr>
<td>Appendix A: Glossary</td>
<td>55</td>
</tr>
<tr>
<td>Appendix B: User’s Guide for Data Entry</td>
<td>67</td>
</tr>
<tr>
<td>Appendix C: Modification: Evaluating Stormwater Treatment Technologies with Long Detention Times</td>
<td>71</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.</td>
<td>TAPE Use Level Designations</td>
<td>5</td>
</tr>
<tr>
<td>Table 2.</td>
<td>Basic, dissolved metals, phosphorus, and oil treatment and pretreatment performance goals and required water quality parameters for TAPE monitoring</td>
<td>8</td>
</tr>
<tr>
<td>Table 3.</td>
<td>Example Stormwater Treatment Mechanisms</td>
<td>11</td>
</tr>
<tr>
<td>Table 4.</td>
<td>Example Measurement Quality Objectives for Water Quality Monitoring</td>
<td>13</td>
</tr>
<tr>
<td>Table 5.</td>
<td>Storm Event Guidelines for TAPE Monitoring</td>
<td>14</td>
</tr>
<tr>
<td>Table 6.</td>
<td>Sample Collection Requirements for Automated, Flow-Proportional Composite Sampling (Sampling Method 1)</td>
<td>15</td>
</tr>
<tr>
<td>Table 7.</td>
<td>Sample Collection Requirements for Discrete Flow Sampling (Sampling Method 4)</td>
<td>15</td>
</tr>
<tr>
<td>Table 8.</td>
<td>Required Water Quality Parameters for TAPE Monitoring</td>
<td>15</td>
</tr>
<tr>
<td>Table 9.</td>
<td>Optional Sediment Sampling Parameters for TAPE Monitoring</td>
<td>23</td>
</tr>
<tr>
<td>Table 10.</td>
<td>Example Sample Container, Preservation, and Holding Times for Water Quality Monitoring</td>
<td>24</td>
</tr>
<tr>
<td>Table 11.</td>
<td>Reporting Limits and Analytical Methods for Water Quality Parameters</td>
<td>28</td>
</tr>
<tr>
<td>Table 12.</td>
<td>Required Particle Size Distribution Size Categories for the Modified Suspended Sediment Concentration Method</td>
<td>30</td>
</tr>
<tr>
<td>Table 13.</td>
<td>Reporting Limits and Analytical Methods for Optional Sediment Parameters</td>
<td>31</td>
</tr>
<tr>
<td>Table 14.</td>
<td>Example Quality Control Sample Summary for Water Quality Monitoring</td>
<td>32</td>
</tr>
<tr>
<td>Table 15.</td>
<td>Example Equipment Maintenance and Calibration Schedule</td>
<td>34</td>
</tr>
<tr>
<td>Table 16.</td>
<td>Sample Collection Requirements for Automated, Flow-Proportional Composite Sampling</td>
<td>36</td>
</tr>
<tr>
<td>Table 17.</td>
<td>Influent Range, Minimum Number of Samples, Criteria, and Required Parameters for TAPE Long Detention Modification Performance Goals</td>
<td>78</td>
</tr>
</tbody>
</table>

Publication number 18-10-038 (Rev 09/18)
Acknowledgements

Ecology manages the TAPE program with considerable assistance from a Stakeholders Advisory Group (SAG) and Board of External Reviewers (BER). Ecology appreciates the efforts of the committee members and their willingness to share their expertise. The authors would like to thank the following people for their contributions:

Core Technical Team
- Douglas C. Howie, P.E.
- Joel Baker, Ph.D.
- Carla Milesi
- John Lenth
- Dylan Ahearn, Ph.D.

Washington State Department of Ecology
University of Washington Tacoma
University of Washington Tacoma
Herrera Environmental Consultants
Herrera Environmental Consultants

Stakeholders Advisory Group
- Dawn Anderson
- David Batts
- Matt Zarecor
- Dana de Leon, P.E.
- Kathleen Emmett
- Anita Fichthorn
- Dan Gunther
- Mieke Hoppin
- Doug Hutchinson
- Mark Maurer
- Chris May, Ph.D.
- Alex Nguyen
- Henry Stevens

Pierce County
King County Department of Natural Resources and Parks
Spokane County, Engineering & Roads
City of Tacoma, Environmental Services
Washington State Department of Ecology
Port of Tacoma
Oregon Department of Transportation
City of Tacoma, Environmental Services
Seattle Public Utilities
Thurston County
Kitsap County Public Works
Washington State Department of Transportation
City of Portland

Board of External Reviewers
- Seth Brown
- G. Allen Burton, Ph.D.
- Allen P. Davis, P.E., Ph.D.
- Chris French
- Dennis Helsel, Ph.D.
- James Houle
- Dick Magee, P.E., Sc.D.
- Kurt Marx
- Dipen Patel
- Larry Roesner, Ph.D., P.E.
- David Sample
- Eric Strecker, P.E.

Storm and Stream Solutions, LLC
University of Michigan
University of Maryland
Independent Contractor
Practical Stats
University of New Hampshire Stormwater Center
NJCAT
Marx Environmental Consultants
California State University, Sacramento
Colorado State University
Virginia Tech
Geosyntec Consultants
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BER</td>
<td>Board of External Reviewers</td>
</tr>
<tr>
<td>BMP</td>
<td>Best management practices</td>
</tr>
<tr>
<td>CRM</td>
<td>Certified reference materials</td>
</tr>
<tr>
<td>C-TAPE</td>
<td>Chemical Technology Assessment Protocol-Ecology</td>
</tr>
<tr>
<td>CULD</td>
<td>Conditional use level designation</td>
</tr>
<tr>
<td>EMC</td>
<td>Event mean concentration</td>
</tr>
<tr>
<td>EvTEC</td>
<td>Environmental Technology Evaluation Center</td>
</tr>
<tr>
<td>ETV</td>
<td>Environmental Technology Verification</td>
</tr>
<tr>
<td>GULD</td>
<td>General use level designation</td>
</tr>
<tr>
<td>ISR</td>
<td>Individual storm report</td>
</tr>
<tr>
<td>MQO</td>
<td>Method quality objectives</td>
</tr>
<tr>
<td>MS</td>
<td>Matrix spike</td>
</tr>
<tr>
<td>MSD</td>
<td>Matrix spike duplicate</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NWTPH-Dx</td>
<td>Northwest total petroleum hydrocarbons – motor oil and diesel fractions</td>
</tr>
<tr>
<td>NWTPH-Gx</td>
<td>Northwest total petroleum hydrocarbons – gasoline fraction</td>
</tr>
<tr>
<td>PE</td>
<td>Performance evaluations</td>
</tr>
<tr>
<td>PSD</td>
<td>Particle size distribution</td>
</tr>
<tr>
<td>PULD</td>
<td>Pilot use level designation</td>
</tr>
<tr>
<td>QA</td>
<td>Quality assurance</td>
</tr>
<tr>
<td>QA/QC</td>
<td>Quality assurance/quality control</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>QAPP</td>
<td>Quality Assurance Project Plan</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RPD</td>
<td>Relative percent difference</td>
</tr>
<tr>
<td>SSC</td>
<td>Suspended sediment concentration</td>
</tr>
<tr>
<td>SWMMWW</td>
<td>Stormwater Management Manual for Western Washington</td>
</tr>
<tr>
<td>SWMMEW</td>
<td>Stormwater Management Manual for Eastern Washington</td>
</tr>
<tr>
<td>STEPP</td>
<td>Stormwater Testing and Evaluation of Products and Practices</td>
</tr>
<tr>
<td>STTC</td>
<td>Stormwater Testing Technology Center</td>
</tr>
<tr>
<td>TAPE</td>
<td>Technology Assessment Protocol-Ecology</td>
</tr>
<tr>
<td>TARP</td>
<td>Technology Acceptance and Reciprocity Partnership</td>
</tr>
<tr>
<td>TER</td>
<td>Technical Evaluation Report</td>
</tr>
<tr>
<td>TKN</td>
<td>Total Kjeldahl Nitrogen</td>
</tr>
<tr>
<td>TP</td>
<td>Total phosphorus</td>
</tr>
<tr>
<td>TPH</td>
<td>Total petroleum hydrocarbons</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>TVSS</td>
<td>Total volatile suspended solids</td>
</tr>
<tr>
<td>WWHM</td>
<td>Western Washington Hydrology Model</td>
</tr>
</tbody>
</table>
Introduction

This technical guidance manual was written to assist vendors, designers, manufacturers, and their consultants (all referred to herein as “proponents”) in monitoring site selection, Quality Assurance Project Plan (QAPP) development, monitoring program implementation, and preparation of a Technical Evaluation Report (TER), all of which are required to certify stormwater treatment technologies through the Washington State Technology Assessment Protocol-Ecology (TAPE) program.

This manual updates the August 2011 revision of the Guidance for Evaluating Emerging Stormwater Treatment Technologies TAPE (Publication Number 11-10-061), in conjunction with the following documents:

This manual is composed of three sections:

- **TAPE Program Overview**: General description of the TAPE program, including definitions of the use level designations and performance goals for each designation. (Additional information on the program is available in the TAPE Overview document described above.)

- **Preparing a QAPP**: The required structure for QAPP submittals. This section describes the information required for QAPP submittals, monitoring site selection, monitoring program implementation, required monitoring methods, and experimental design components.

- **Preparing a TER**: The required structure and content for TER submittals and data analysis methods required as part of the TER submittal.

Ecology updated the TAPE Technical Guidance Manual in September 2018. Ecology may consider field data collected prior to September 2018 to satisfy the performance goals of TAPE. Previously collected field data must meet either the 2011 or the 2018 TAPE guidelines and include an Ecology approved Quality Assurance Project Plan.
This page intentionally left blank
TAPE Program Overview

The *Stormwater Management Manual for Western Washington* (SWMMWW) (Ecology 2012a) and *Stormwater Management Manual for Eastern Washington* (SWMMEW) (Ecology 2018c) include design criteria and performance goals for stormwater treatment facilities in the state of Washington. These criteria ensure stormwater treatment facilities meet performance goals for new development and redevelopment. Volume V, Chapter 12 of the SWMMWW and Chapter 5, Section 12 of the SWMMEW discuss emerging treatment technologies. Both manuals can be found online at: https://www.ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Stormwater-manuals. However, neither manual provides criteria for the selection and sizing of emerging technologies, because the technologies and knowledge of them evolve rapidly. This manual describes how Ecology will evaluate emerging stormwater treatment technologies.

The TAPE program provides a peer-reviewed regulatory certification process for emerging stormwater treatment technologies. The Washington State Department of Ecology (Ecology) administers the TAPE program, with assistance from staff at the Washington Stormwater Center (www.wastormwatercenter.org), which provides stormwater management assistance including guidance on certification of emerging treatment technologies. Ecology and the Washington Stormwater Center established a Board of External Reviewers (BER) to review emerging treatment technology design and performance data, and recommend whether or not to certify a proposed technology. Based on BER technical reviews, Washington Stormwater Center staff advises Ecology regarding which new stormwater treatment technologies meet performance goals. If a device meets the performance goal, Ecology adds it to the list of approved technologies in the SWMMWW and SWMMEW. Ecology makes the final decision to certify new stormwater treatment technologies.

Ecology specifically designed this protocol to evaluate flow through best management practices (BMPs) with relatively short detention times, and may not be suitable for all stormwater treatment technologies. Ecology has developed an alternative monitoring protocol that applies to long-detention BMPs (e.g., wet ponds) (Ecology 2018d). A proponent may request a preliminary meeting with Ecology to discuss which portions of this technical guidance manual apply to the technology they will be monitoring and to obtain input on other testing protocols that may be applicable. Ecology recommends the vendor or manufacturer retain an independent third-party to prepare a QAPP, conduct field monitoring, and prepare a TER. Alternatively, vendors or manufacturers may prepare the QAPP, conduct their own field monitoring, and prepare the TER. However, an independent professional third party must verify that the proponent conducted the monitoring in accordance with this protocol and the QAPP, and prepare a third-party review memorandum.
Proponents may also use portions of this manual to evaluate the effectiveness of both innovative and existing non-proprietary BMPs, possibly resulting in changes to the design standards for these practices in the stormwater management manuals. Local governments statewide can use the emerging technology use level designations (see Use Level Designations section) posted on Ecology’s website to identify approved stormwater technologies or those that are in the process of approval: https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies.

Ecology intends that the protocol presented in this manual can characterize an emerging technology’s effectiveness (with a given level of statistical confidence) in removing pollutants from stormwater runoff, and to compare test results with a proponent’s performance claims and TAPE performance goals. The test protocol also assesses technologies with respect to other factors such as maintenance, reliability, and longevity (see Preparing a TER [Technology Description]). The following sections summarize the use level designations and the performance goals of the TAPE program.

Use level designations

To enter the TAPE program, proponents must complete the Emerging Stormwater Treatment Technologies Application for Certification (Application) (Ecology 2018a) and submit it to Ecology for review. Ecology (possibly in consultation with the BER) will evaluate the Application to determine an initial use level designation for the technology. A detailed discussion of the application process is contained in the Technology Assessment Protocol – Ecology (TAPE) Process Overview (TAPE Overview Document) (Ecology 2018b).

In order to determine the appropriate use level designation for a stormwater treatment technology, Ecology evaluates the analytical data contained within the Application. The use level designation defines how many installations can occur in Washington State and defines additional monitoring requirements. Depending on the relevance, amount, and quality of performance data provided with the Application, Ecology may grant the technology one of two use level designations: pilot use level designation (PULD) or conditional use level designation (CULD) (Table 1). PULDs are typically given when there are sufficient laboratory data available to indicate a treatment technology may meet the performance goals for TAPE that are described in the next subsection. Ecology typically grants a CULD when there are both laboratory and field data available for a treatment technology that would indicate an even greater likelihood of meeting the performance goals. The PULD and CULD allows installation and operation of the technology in the state of Washington to gather the performance data required for final general use level designation (GULD) certification. Installation is subject to approval by local jurisdictions. Refer to Table 1 for additional conditions.

Because local installation and testing provide useful information, Ecology encourages local jurisdictions, industrial or commercial establishments, and consultants to consider installing technologies with a PULD or CULD. Local governments covered by a municipal stormwater National Pollutant Discharge Elimination System (NPDES) permit must submit a Notice of Intent form (https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies).
technologies) to Ecology when a proponent proposes installation of a PULD technology in their jurisdiction.

The proponent must submit a QAPP that meets Ecology’s QAPP guidance and the requirements of the TAPE protocol within 6-months of finding a suitable monitoring site and notifying Ecology. Failure to submit the QAPP within this 6-month timeframe will result in a suspension of the PULD or CULD by Ecology. Ecology may remove the suspension if the proponent provides justification for missing the deadline and submits a QAPP for technical review.

Table 1. TAPE Use Level Designations

<table>
<thead>
<tr>
<th>Use Level Designation</th>
<th>Minimum Data Required for Certification a</th>
<th>Time Limit (months) b</th>
<th>Maximum Number of Installations in Washington State</th>
<th>Field Testing Required Under Designation to achieve GULD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot (PULD)</td>
<td>Laboratory</td>
<td>30</td>
<td>5c</td>
<td>A minimum of one site located in the Pacific Northwest or at an approved Stormwater Technology Evaluation Facility; all sites installed in Washington state must be monitored d</td>
</tr>
<tr>
<td>Conditional (CULD)</td>
<td>Field data required; laboratory data may supplement but not substitute for required field data.</td>
<td>30</td>
<td>10c</td>
<td>A minimum of one site located in the Pacific Northwest or at an approved Stormwater Technology Evaluation Facility</td>
</tr>
<tr>
<td>General (GULD)</td>
<td>Field data following TAPE protocol required; laboratory data may supplement but not substitute for required field data</td>
<td>Unlimited</td>
<td>Unlimited e</td>
<td>None</td>
</tr>
</tbody>
</table>

a Proponent must supply all available performance data with the initial application. PULD and CULD approvals depend on the relevance, amount, and quality of data. Submittal of data does not ensure approval. This manual primarily addresses the requirements that applicants need to meet in order to receive GULD approval.

b From the time the original use level designation is received from Ecology, proponents with a PULD or CULD are typically allowed a maximum of 30 months to prepare a QAPP, receive QAPP approval, conduct stormwater monitoring according to the QAPP, and prepare a TER requesting CULD or GULD certification for their stormwater treatment technology. Proponents requiring extensions on the 30-month use level designation, or the submittal of a QAPP or TER, must submit a request to Ecology at least 2 weeks before the due date. Ecology will grant extensions only if the proponent shows they are making progress toward completing required TAPE components.

c Installation limit applies to devices installed to meet new and redevelopment treatment criteria. There is no installation limit for stormwater retrofit or industrial permit projects.

e Subject to conditions imposed by Ecology (e.g., maximum flow rates, limitations on drainage basin size, locations for use, and others as appropriate) that are listed in the GULD document posted on Ecology’s website. Local jurisdictions may impose additional conditions.
The BER provides technical review of the QAPP after its submittal. Based on recommendations from the BER, Ecology will either approve the QAPP or request modification of the QAPP from the proponent before the start of field monitoring. Proponents should allow up to 3-months for QAPP review and approval. Ecology allows proponents with a PULD or CULD a maximum of 30-months to prepare a QAPP, receive QAPP approval, conduct stormwater monitoring according to the QAPP, and prepare a TER requesting CULD or GULD certification for their stormwater treatment technology. Proponents requiring extensions on the 30-month use level designation, or the submittal of a QAPP or TER, must submit a request to Ecology at least 2 weeks before the due date. Ecology will grant extensions only if the proponent shows that they are making progress toward completing the required TAPE components.

Ecology does not require removal of systems with a PULD or CULD if field monitoring indicates that the technology did not perform as expected; however, the proponent is required to meet the terms of their agreement with the local jurisdiction or property owner. This may involve retrofitting the site or adding treatment BMPs to attain the level of treatment required for the area.

Performance goals

As summarized in Table 2, Ecology’s stormwater manuals specify pretreatment, basic, dissolved metals, phosphorus, and oil treatment performance goals in Volume V, Chapter 3, of the SWMMWW (Ecology 2012a) and Chapter 5, Section 1 of the SWMMEW (Ecology 2018c). Ecology also uses these goals in the TAPE program to evaluate emerging stormwater treatment technologies. Proponents attempting to obtain a GULD for a specific stormwater treatment technology must demonstrate that the device can achieve the applicable treatment performance goals by monitoring the water quality parameters listed in Table 2. The performance goals depend on whether the technology is a standalone facility or part of a treatment train. If part of a treatment train, the proponent must evaluate the performance of the entire treatment train. The proponent may also monitor the components of a treatment train in addition to the entire treatment train. However, this is not required if the system design will always include the same treatment train configuration.

Ecology and the BER also evaluate factors other than treatment performance (e.g., site requirements, sizing methodology, installation, operation and maintenance requirements, reliability) to determine the appropriate uses (e.g., specific land use types, siting restrictions) of the stormwater treatment technology (see *Preparing a TER [Technology Description]*).

The treatment performance goals identified in Table 2 apply to the water quality design hydraulic loading rate. The proponent must also measure and report the portion of the discharge volume that bypasses the stormwater treatment technology on an average basis. The proponent can route the incremental portion of runoff in excess of the water quality design hydraulic loading rate around the facility (off-line treatment facilities) or pass it through the facility (on-line treatment facilities). However, they should not consider this incremental portion of the runoff in analyses performed to determine if the stormwater treatment technology meets the applicable treatment performance goals; rather, only use these data to confirm correct application of system sizing criteria and evaluate the accuracy of maintenance schedules indicated by the proponent.
If the proponent has already received a GULD for basic treatment and is conducting a second monitoring study for dissolved metals or phosphorus treatment, it may not be necessary to perform monitoring to demonstrate basic treatment performance. Instead, the proponent may resubmit monitoring data from the TER that was used to document basic treatment performance if there has been no change in the treatment technology, media, or sizing criteria.
Table 2. Basic, dissolved metals, phosphorus, and oil treatment and pretreatment performance goals and required water quality parameters for TAPE monitoring

<table>
<thead>
<tr>
<th>Performance Goal</th>
<th>Influent Range</th>
<th>Criteria</th>
<th>Required Water Quality Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Treatment</td>
<td>20-100 mg/L TSS</td>
<td>Effluent goal < 20 mg/L TSS</td>
<td>TSS</td>
</tr>
<tr>
<td></td>
<td>100-200 mg/L TSS</td>
<td>≥ 80% TSS removal</td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals Treatment</td>
<td></td>
<td>Must meet basic treatment goal and exhibit ≥ 30% dissolved copper removal</td>
<td>TSS, hardness, total and dissolved Cu and Zn</td>
</tr>
<tr>
<td></td>
<td>Dissolved copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.005 – 0.02 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dissolved zinc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02 – 0.3 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus Treatment</td>
<td>Total phosphorus (TP)</td>
<td>0.1 - 0.5 mg/L</td>
<td>TSS, TP, orthophosphate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Must meet basic treatment goal and exhibit ≥ 60% dissolved zinc removal</td>
<td></td>
</tr>
<tr>
<td>Oil Treatment</td>
<td>Total petroleum hydrocarbons (TPH)</td>
<td>≥ 10 mg/L</td>
<td>NWTPH-Dx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) Daily average effluent TPH concentration < 10 mg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Maximum effluent TPH concentration of 15 mg/L for a discrete (grab) sample</td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>50-100 mg/L TSS</td>
<td>Effluent goal < 50 mg/L TSS</td>
<td>TSS</td>
</tr>
<tr>
<td></td>
<td>100-200 mg/L TSS</td>
<td>≥ 50% TSS removal</td>
<td></td>
</tr>
</tbody>
</table>

mg/L – milligrams per liter
Cu – copper
NWTPH-Dx – Northwest Total Petroleum Hydrocarbons-Motor Oil and Diesel fractions
TP – total phosphorus
TPH – total petroleum hydrocarbons
TSS – total suspended solids
Zn – zinc

a Samples with influent concentrations that are greater than the range may be included by artificially setting the value at the upper end of the concentration range prior to completing the pollutant removal efficiency calculations. If the applicant opts to include samples with concentrations that are greater than the influent concentration range, they must include all valid samples that are greater than the range (i.e. applicants cannot “cherry pick” data).
b The upper one-sided 95 percent confidence interval around the mean effluent concentration for the treatment system being evaluated must be lower than this performance goal to meet the performance goal with the required 95 percent confidence.
c The lower one-sided 95 percent confidence interval around the mean removal efficiency for the treatment system being evaluated must be higher than this performance goal to meet the performance goal with the required 95 percent confidence.
d Referred to as Enhanced Treatment in the Stormwater Management Manual for Western Washington (Ecology 2012a) and Metals Treatment in the Stormwater Management Manual for Eastern Washington (Ecology 2018c). Must meet the removal goal for both dissolved copper and dissolved zinc in order to achieve a Dissolved Metals Treatment GULD. Meeting the removal goal for only one of these dissolved metals is not sufficient.
e Dissolved copper, dissolved zinc, and total phosphorus influent concentrations that are less than the specified range may be included. If the proponent opts to include samples with concentrations that are less than the influent concentration range, they must provide detailed information to support a new minimum threshold for their study. They must then use that new threshold across their entire dataset.
f This percent removal was determined based on an analysis of basic treatment BMP dissolved metals removal data from the International Stormwater BMP database to define performance goals for dissolved metals treatment (Washington Stormwater Center and Herrera 2011). Ecology staff reviewed and screened data from the International Stormwater BMP database based on influent concentrations, geographic location, data quality, BMP design, and monitoring problems to develop a subset of data that was representative and suitable for determining BMP performance.
g This performance goal should be evaluated based on the motor oil fraction of TPH-Dx only.
h Pretreatment technologies generally apply to (1) project sites using infiltration treatment and (2) treatment systems where pretreatment is needed to ensure and extend performance of the downstream basic or dissolved metals treatment facilities.
Preventing a Quality Assurance Project Plan (QAPP)

This section provides guidance on preparing the QAPP required as part of the TAPE certification process. The proponent must submit a QAPP that meets Ecology’s QAPP guidance and the requirements of the TAPE protocol within 6 months of finding a suitable monitoring site and notifying Ecology. Ecology allows proponents with a PULD or CULD a maximum of 30-months to prepare a QAPP, receive QAPP approval, conduct stormwater monitoring according to the QAPP, and prepare a TER requesting CULD or GULD certification for their stormwater treatment technology. The QAPP can be prepared by the vendor/manufacturer, an independent professional third party that will be conducting the monitoring program for the vendor/manufacturer, or another independent third party. QAPPs must include detailed information on the actual site selected for monitoring. Ecology will return incomplete QAPPs to the proponent without review.

This section is structured similarly to the Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies (QAPP Guidelines) (Ecology 2004) to assist proponents with developing a monitoring program consistent with the guidelines proposed by Ecology. The proponent should refer to the QAPP Guidelines for full details. The required elements of a QAPP are described in the following sections:

- Background
- Project description
- Organization and schedule
- Personnel names and qualifications
- Quality objectives
- Experimental design
- Sampling procedures
- Measurement procedures
- Quality control including laboratory QC and all field instrument calibration procedures, standards, and frequencies.
- Data management procedures
- Audits and reports
- Data verification and validation
- Data quality assessment

Note: The “Title page with approvals” and “Table of contents and distribution list” QAPP elements were not included in this manual, since they are well defined in the QAPP Guidelines. This section focuses on the components of the QAPP that have specific TAPE program requirements that are not described in the QAPP Guidelines. Both of these documents should be used when preparing a QAPP for the TAPE program.
Background

The background section of the QAPP must contain information on the use level designation that the proponent has received from Ecology, and which performance goals that the proponent will evaluate through their monitoring program. These use level designations are presented in Table 1 and performance goals are presented in Table 2 in the TAPE Program Overview section. The background section must also provide a detailed description of the stormwater treatment technology and briefly summarize the results of laboratory testing or field monitoring results provided in the Application.

Technology description

This section of the QAPP provides a generic description of the technology with sufficient detail to allow the reader to fully understand how the technology works. The Experimental Design section of the QAPP describes the specifics of the site selected for TAPE monitoring. The technology description in the QAPP must include the elements listed below at a minimum.

• Description of biological, chemical, or physical treatment mechanisms (see examples in Table 3)
• Design drawings and photographs
• Equipment dimensions
• Design hydraulic loading rate (gallons per minute [gpm], cubic feet per second [cfs], inches per hour [in/hr])
• Explanation of site installation requirements (see examples in Preparing a TER [Technology Description])
• Description of any pretreatment requirements or recommendations
• Description of any components of the treatment system that may contain copper, zinc, or phosphorus or any other constituent of concern that might contribute to increased pollutant concentrations in the effluent
• Description of any components (e.g., concrete) that may result in pH fluctuations in the effluent
• Operation and maintenance requirements, including the anticipated frequency and duration of a typical maintenance cycle
Table 3. Example Stormwater Treatment Mechanisms

<table>
<thead>
<tr>
<th>Treatment Category</th>
<th>Treatment Mechanisms</th>
<th>Treatment Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological</td>
<td>Biological growth</td>
<td>Nitrification</td>
</tr>
<tr>
<td></td>
<td>Denitrification</td>
<td>Plant uptake and storage</td>
</tr>
<tr>
<td></td>
<td>Microbial mediated transformations</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>Absorption</td>
<td>Anion exchange</td>
</tr>
<tr>
<td></td>
<td>Adsorption</td>
<td>Cation exchange</td>
</tr>
<tr>
<td>Physical</td>
<td>Adhesion</td>
<td>Interception</td>
</tr>
<tr>
<td></td>
<td>Adsorption</td>
<td>Sedimentation</td>
</tr>
<tr>
<td></td>
<td>Filtration</td>
<td>Settling</td>
</tr>
<tr>
<td></td>
<td>Flocculation</td>
<td>Straining</td>
</tr>
<tr>
<td></td>
<td>Impaction</td>
<td>Vortexing separation</td>
</tr>
</tbody>
</table>

*a This table provides examples of common biological, chemical, and physical treatment mechanisms that are present in stormwater treatment technologies. Additional treatment mechanisms not listed in this table may also be included.

Results of previous studies
In this section of the QAPP, proponents should summarize results from previous laboratory testing. Include results from field monitoring using protocols other than TAPE, such as the Environmental Technology Verification (ETV), Environmental Technology Evaluation Center (EvTEC), and Technology Acceptance and Reciprocity Partnership (TARP).

Project description
The QAPP should briefly describe the project, including the following information:
- Project objectives (e.g., characterizing pollutant removal effectiveness and effluent quality at the design hydraulic loading rate, providing data demonstrating the removal effectiveness of the system for dissolved metals)
- Information (i.e., data) that will be required to meet the project objectives
- Number of test locations and approximate duration of monitoring
- Tasks that will be required to collect the data
- Potential constraints (e.g., seasonal or meteorological conditions, limited access, safety, or availability of personnel or equipment)

Organization and schedule
The organization and schedule section of the QAPP must specify the following:
- Name, organization, and phone numbers of key members of the project team (e.g., project manager, test site owner/manager, field personnel, consultant oversight participants, and analytical laboratory contacts)
- Identification of who will perform the third-party evaluation
- Roles and responsibilities of the key members of the project team
- Project schedule documenting when the treatment system and associated monitoring equipment will be installed, the expected field monitoring start date, projected field sampling completion, and TER submittal
Proponents with a PULD or CULD are allowed a maximum of 30 months to prepare a QAPP, receive QAPP approval, conduct stormwater monitoring according to the QAPP, and prepare a TER requesting CULD or GULD certification for their stormwater treatment technology. Proponents should allow up to 3 months for QAPP review and approval. It is also recommended that the proponent allow time for initial startup and testing of the treatment system and monitoring equipment at the beginning of the monitoring period. Proponents requiring extensions on the 30-month use level designation, or the submittal of a QAPP or TER, must submit a request to Ecology at least 2 weeks before the due date. Ecology may grant extensions only if the proponent shows that progress is being made toward completing required TAPE components.

Quality objectives

The goal of the QAPP is to ensure that data collected during this study are scientifically and legally defensible. To meet this goal, the data must be evaluated using the following data quality indicators (Ecology 2004):

- **Precision**: A measure of the variability in the results of replicate measurements due to random error. Random errors are always present because of normal variability in the many factors that affect measurement results. Precision can also be affected by the variations of the actual concentrations in the media being sampled.

- **Bias**: The constant or systematic distortion of a measurement process, different from random error, which manifests itself as a persistent positive or negative deviation from the known or true value. This can result from improper data collection, poorly calibrated analytical or sampling equipment, or limitations or errors in analytical methods and techniques.

- **Representativeness**: The degree to which the data accurately describe the condition being evaluated, based on the selected sampling locations, sampling frequency and duration, and sampling methods.

- **Completeness**: The amount of valid data obtained from the measurement system.

- **Comparability**: A qualitative term that expresses the measure of confidence that one dataset can be compared to another and can be combined or contrasted for the decision(s) to be made. Data are comparable if sample collection techniques, measurement procedures, analytical methods, and reporting are equivalent for samples within a sample set, and meet acceptance criteria between sample sets.

Measurement Quality Objectives (MQOs) are performance or acceptance criteria established for the data. The QAPP must specify MQOs that will be used in the assessment of water quality and hydrologic data, as described in the following subsections. The MQOs should be verified with the laboratory selected for sample analysis to confirm that they can be met.

Bias

The QAPP must describe the bias measurement methodology, and include the bias calculation for both flow and water quality data. The QAPP must include a table listing each parameter, appropriate ranges for laboratory control limits, laboratory duplicate percent recovery ranges, matrix spike and matrix spike duplicate (MS/MSD) percent recovery ranges (if appropriate), and field duplicate percent recovery ranges (see Table 4 for an example). The proponent should
describe precautions that will be taken to reduce bias due to sample collection procedures, sample transport, and sample storage (e.g., how samples will be kept cold during and after collection). Other bias sources, such as calibrations, reagent quality, method blanks, interference effects, dilutions, and field equipment contamination (equipment rinsate blanks) should also be discussed.

Table 4. Example Measurement Quality Objectives for Water Quality Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laboratory Control Sample (LCS) Recovery</th>
<th>Laboratory Duplicate RPD</th>
<th>Matrix Spike (MS) Recovery</th>
<th>Matrix Spike Duplicate (MSD) RPD</th>
<th>Field Duplicate RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>80 – 120%</td>
<td>≤20%</td>
<td>NA</td>
<td>NA</td>
<td>≤20%</td>
</tr>
<tr>
<td>PSD</td>
<td>NA</td>
<td>≤20%</td>
<td>NA</td>
<td>NA</td>
<td>≤20%</td>
</tr>
<tr>
<td>pH a</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>≤10%</td>
</tr>
<tr>
<td>TP</td>
<td>80 – 120%</td>
<td>≤20%</td>
<td>75 – 125%</td>
<td>≤20%</td>
<td>≤20%</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>80 – 120%</td>
<td>≤20%</td>
<td>75 – 125%</td>
<td>≤20%</td>
<td>≤20%</td>
</tr>
<tr>
<td>TKN</td>
<td>80 – 120%</td>
<td>≤20%</td>
<td>75 – 125%</td>
<td>≤20%</td>
<td>≤20%</td>
</tr>
<tr>
<td>Nitrate-Nitrite</td>
<td>80 – 120%</td>
<td>≤20%</td>
<td>75 – 125%</td>
<td>≤20%</td>
<td>≤20%</td>
</tr>
<tr>
<td>Total and dissolved copper and zinc</td>
<td>70-130%</td>
<td>≤20%</td>
<td>75 – 125%</td>
<td>≤20%</td>
<td>≤20%</td>
</tr>
<tr>
<td>Hardness</td>
<td>70-130%</td>
<td>≤20%</td>
<td>75 – 125%</td>
<td>≤20%</td>
<td>≤20%</td>
</tr>
<tr>
<td>NWTPH-Dx</td>
<td>70 – 130%</td>
<td>≤40%</td>
<td>70 – 130%</td>
<td>≤40%</td>
<td>≤40%</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>NA</td>
<td>≤20%</td>
<td>NA</td>
<td>NA</td>
<td>≤20%</td>
</tr>
<tr>
<td>E. coli</td>
<td>NA</td>
<td>≤20%</td>
<td>NA</td>
<td>NA</td>
<td>≤20%</td>
</tr>
</tbody>
</table>

Source: Ecology Environmental Assessment Program

* pH is measured in the field and accuracy is ensured by calibrating the instrument before and after each use.

Source

NA – not applicable
NWTPH-Dx – Northwest Total Petroleum Hydrocarbons-Motor Oil and Diesel fractions
RPD – relative percent difference
TP – total phosphorus
TKN – total Kjeldahl nitrogen
TSS – total suspended solids

Precision

The QAPP must describe the measurement methodology and include the formula for calculating precision for both flow and water quality data. Relative percent difference (RPD) (i.e., the difference between two values divided by their mean and multiplied by 100) is the most frequently used MQO for the precision of duplicate laboratory or field samples. The QAPP must also include a MQO table indicating the acceptable percent recovery range for laboratory splits (laboratory duplicates) and MS/MSDs (see example in Table 4).

Representativeness

Sampling events should be selected to represent a range of conditions with respect to rainfall volume and intensity to ensure the representativeness of the data. Storm event guidelines listed in Table 5 should be used to define the acceptability of specific storm events for sampling and
assist with evaluating water quality monitoring data obtained from TAPE monitoring. Ecology requires samples to be collected over one and a half maintenance cycles (or over two wet seasons for systems with maintenance cycles longer than 2 years), to verify maintenance requirements and demonstrate if performance changes over time. Alternatively, samples can be collected over a period of time sufficient to quantify the sediment load that causes a technology to fail and thus require maintenance. Under this scenario, a technology may be “artificially aged” following methods described in an Ecology approved protocol or QAPP.

Table 5. Storm Event Guidelines for TAPE Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Guideline a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum storm depth</td>
<td>Total rainfall amount during the storm event</td>
<td>0.15 inches</td>
</tr>
<tr>
<td>Storm start (antecedent dry-period)</td>
<td>Defines the storm event's beginning as designated by minimum time interval without significant rainfall</td>
<td>6 hours minimum with less than 0.04 inches of rain</td>
</tr>
<tr>
<td>Storm end (post storm dry period)</td>
<td>Defines the storm event's end as designated by minimum time interval without significant rainfall</td>
<td>6 hours minimum with less than 0.04 inches of rain</td>
</tr>
<tr>
<td>Minimum storm duration</td>
<td>Shortest acceptable rainfall duration</td>
<td>1 hour</td>
</tr>
<tr>
<td>Average storm intensity</td>
<td>Total rainfall amount divided by total rainfall duration (e.g., inches per hour)</td>
<td>Range of rainfall intensities b</td>
</tr>
</tbody>
</table>

a Provide justification in the Technical Evaluation Report (TER) for storm event data that does not meet the storm event guidelines, but is included in the data analysis.

b To assess performance on an annual average basis and performance at the system’s peak design rate, proponents should collect samples over a range of rainfall intensities.

The QAPP must also describe the measures taken to ensure that collected samples represent a wide range of water quality conditions during storm flow conditions, including criteria for minimum aliquot numbers and storm event hydrograph coverage. These guidelines help to ensure that composite samples are representative of an event-mean concentration (EMC). Table 6 presents requirements to ensure samples collected using Sampling Method 1: Automated Flow Proportional Composite Sampling are representative of the EMC of targeted storm events. Table 7 summarizes sample collection requirements when using Sampling Method 4: Discrete Flow Sampling.

Finally, the representativeness of the hydrologic data for the flow monitoring should also be addressed by the proper installation of the monitoring equipment.
Table 6. Sample Collection Requirements for Automated, Flow-Proportional Composite Sampling (Sampling Method 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum aliquot number</td>
<td>The number of equal-volume samples collected during a storm event that are combined to create a composite sample</td>
<td>10 aliquots (^a)</td>
</tr>
<tr>
<td>Storm event coverage</td>
<td>The percentage of the total storm volume that the collected aliquots represent</td>
<td>For storm events lasting less than 24 hours, samples shall be collected for at least 75% of the storm event hydrograph (by volume). For storm events lasting longer than 24 hours, samples shall be collected for at least 75% of the hydrograph (by volume) of the first 24 hours of the storm.</td>
</tr>
<tr>
<td>Maximum sampling duration</td>
<td>Time in hours between the collection of the first and last aliquots</td>
<td>36 hours</td>
</tr>
<tr>
<td>Minimum number of sample pairs</td>
<td>Number of storm events with successfully collected flow-proportional composite samples that meet the influent concentration ranges and the storm event guidelines</td>
<td>15 samples (^b)</td>
</tr>
</tbody>
</table>

\(^a\) Ecology may accept as few as 7 aliquots. Proponents must include rationale in the TER why less than 10 aliquots were collected, but the sample accepted.
\(^b\) Paired influent and effluent data from more than one site can be combined (pooled) to meet the minimum number of samples.

Table 7. Sample Collection Requirements for Discrete Flow Sampling (Sampling Method 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design hydraulic loading rate</td>
<td>The maximum flow rate designed to pass through the treatment system to provide treatment for the water quality storm (6-month return frequency, 24-hour storm)</td>
<td>Collect samples from a relatively constant flow rate for the sampling duration. Targeted flow rates shall be between 50 to 125% of the design hydraulic loading rate (^a)</td>
</tr>
<tr>
<td>Minimum number of sample pairs</td>
<td>Number of storm events with successfully collected discrete flow samples that meet the influent concentration ranges (Table 2) and the storm event guidelines (Table 5)</td>
<td>15 samples (^b)</td>
</tr>
<tr>
<td>Influent concentration</td>
<td>Pollutant concentration measured at the inlet of the treatment system</td>
<td>Must meet the influent concentration range specified in Table 2</td>
</tr>
<tr>
<td>Minimum sampling duration</td>
<td>Flow volume through the test unit between the collection of the first and last aliquots</td>
<td>≥ Eight times the detention volume of the test unit.</td>
</tr>
</tbody>
</table>

\(^a\) Samples must be spaced out along the 50-125% design hydraulic loading rate range. Samples that have less than a 20% variation from the median flow can be combined.
\(^b\) Paired influent and effluent data from more than one site can be combined (pooled) to meet the minimum number of samples.
Completeness

Completeness for water sampling can be calculated by dividing the number of valid values by the total number of values. Completeness can be defined in terms of the number or percentage of valid measurement needed to meet the project’s objectives (Ecology 2004). Valid sample data consists of unflagged data and estimated data that has been assigned an estimated value (J) qualifier, but deemed usable. J qualified data indicate the parameter was detected above the reported quantitation limit; however, the associated concentration is considered an estimate due to a quality assurance issue. A qualitative assessment must be made as to which J flagged data may need to be excluded from this calculation before the production of the TER. The rationale for acceptance of J flagged data must be documented in the TER.

A minimum of 15 valid composite samples, meeting the influent concentration ranges specified in Table 2 and the sample collection requirements specified in Table 6 or Table 7, are required to evaluate the performance of the system; however, additional samples may be required to demonstrate performance of the system at the required level of statistical confidence for obtaining a GULD. The storm event guidelines identified in Table 5 should also be evaluated to assess the validity of the samples collected.

Similar to composite sampling, grab samples must be collected from a minimum of 15 valid storm events, meeting the influent concentration range specified in Table 2, to meet the oil treatment requirements. Again, the storm event guidelines identified in Table 5 should also be evaluated to assess the validity of the grab samples collected. Proponents may collect more than one grab sample from each storm event as long as the minimum requirement of 15 valid storm events is met.

Completeness for flow monitoring must be assessed based on the occurrence of gaps in the data record. Gaps include data that are known to be inaccurate and cannot be corrected using available calibration data. The associated MQO must identify the maximum percentage of the data record during storms and over the entire monitoring period that can be missing and still meet the goals for flow monitoring specified in the QAPP. Completeness will also be ensured through routine maintenance of all monitoring equipment and the immediate implementation of corrective actions if problems arise.

Comparability

There is no numeric MQO for this data quality indicator; however, standard sampling procedures, analytical methods, units of measurement, and reporting limits applied during TAPE monitoring will address the goal of data comparability. The results should be tabulated in standard spreadsheets to facilitate analysis and comparison with performance data from other stormwater treatment technologies.

Experimental design

As described above, performance of a stormwater treatment technology must be demonstrated based on field testing performed in the Pacific Northwest or at an approved Stormwater Technology Evaluation Facility. This testing will involve continuous flow and precipitation monitoring over the duration of the study, the collection of water quality samples during discrete
storm events, and accumulated sediment sampling. The QAPP must provide detailed information on the following experimental design elements for this testing:

- Monitoring site
- Treatment system sizing
- Precipitation monitoring
- Flow monitoring
- Water sampling
- Sediment sampling

The following sections provide guidance on each of these elements.

Monitoring site

To obtain a GULD, proponents that receive a PULD or a CULD for their stormwater treatment technologies must conduct field monitoring at a minimum of one site. Proponents that receive a PULD must monitor at every site installation. The proponent is responsible for the cost of completing this evaluation, including laboratory testing and field monitoring. Neither Ecology nor the BER will provide funding for this work; however, Ecology recognizes the need to minimize the cost of implementing the TAPE program. To the extent applicable, the following list provides ways to minimize cost yet provide sufficient verification data:

- Conduct field reconnaissance to confirm suitability of site for monitoring based on predominant land use, drainage system configuration, and property access.
- Select sites with simple hydraulics to avoid compromising flow or water quality data.
- Avoid sites with steep slopes, junctions, confluences, grade changes, and areas of irregular channel shape due to breaks, repairs, roots, and debris.
- Avoid sites affected by backwater conditions, tidal influence, or high groundwater levels.
- Consider pooling paired influent and effluent data from several sites to meet the minimum sample event criterion. Data collected from different sized treatment systems must be normalized to reflect the size difference using flow data for this normalization.
- Collect grab samples and analyze for total suspended solids (TSS), particle size distribution (PSD), and other key parameters (e.g., phosphorus, dissolved metals) to evaluate potential field monitoring sites, verify that influent concentrations will fall within the acceptable influent ranges, ensure a representative site, and size the treatment system.
- Periodically evaluate the results to check for statistical significance and acceptability.
- Use laboratory testing to supplement field monitoring results for high flow rates that may be difficult to obtain during field monitoring. The laboratory data may supplement but not substitute for required field data.

Monitoring sites should be selected to be consistent with the technology’s intended applications and geographic location. Monitoring sites must provide influent concentrations typical of stormwater for those land use types. The following information about the monitoring site must be included in the QAPP, if applicable:

- Drainage area contributing to the treatment system, land use (e.g., roadway, commercial, high-use site, residential, industrial), percentage of drainage area that is impervious, and
percentage of drainage area that is pervious. A description of the types of vegetation present in the drainage area should also be included.

- Description of potential pollutant sources in the drainage area (e.g., parking lots, roofs, landscaped areas, sediment sources, exterior storage, or process areas).
- Baseline stormwater quality information to characterize conditions at the site. For sites that have already been developed, it is recommended that the proponent collect baseline data to determine whether site conditions and runoff quality are conducive to performance monitoring.
- Vicinity map showing site location, drainage area, impervious area, slopes, existing drainage system, and other important hydrologic information.
- Site schematic in plan and profile showing treatment system and monitoring equipment locations.
- Latitude and longitude of the treatment system.
- Drainage area flow rates (e.g., water quality design flow, 2-year, 10-year, and 100-year recurrence interval peak flow rates) at 15-minute and 1-hour time steps as provided by an approved continuous runoff model.
- Make, model, and hydraulic capacity of the treatment system.
- Location and description of the closest receiving water body.
- Description of bypass flow rates or flow splitter designs necessary to accommodate the treatment facility.
- Description of pretreatment system, if required by site conditions or treatment system operation.
- Description of any known adverse site conditions such as climate, tidal influence, high groundwater, rainfall pattern, steep slopes, erosion, high spill potential, illicit connections to stormwater drainage system, or industrial runoff.
- Photo documentation of site conditions.

Treatment system sizing

The stormwater treatment technology must be sized for the selected monitoring location. Since the criteria for obtaining a GULD in Washington are focused on selecting a site located in the Pacific Northwest or at an approved Stormwater Technology Testing Facility, this section of the QAPP will focus on the sizing criteria in the SWMMWW. (Note: the TER must include sizing criteria for both western and eastern Washington.)

According to the SWMMWW, the stormwater treatment technology must be sized to meet applicable performance goals at the design hydraulic loading rate that coincides with treating at least 91 percent of the total runoff volume, using an Ecology-approved continuous simulation model such as the Western Washington Hydrology Model (WWHM) or MGS Flood (Ecology 2012a). If the stormwater treatment technology is sited downstream of a detention facility, it must be sized to handle the full 2-year release rate of that facility. Any stormwater treatment technology located downstream of a detention facility must include any treatment accomplished by the pond in the overall analysis of the system. It is likely that approval of the system will require inclusion of a detention facility. The QAPP must document the treatment system basis of design and all related modeling assumptions and inputs.
Ecology restricts the size of systems that filter vertically and rely on media infiltration rate rather than an orifice to control the flow. Unless proven otherwise through sufficient field testing and observation, these systems will be subjected to the following size restriction: The distance from the point of entry of water to the most distant point on the surface of the treatment media shall not exceed 12-feet.

Precipitation monitoring

This section of the QAPP must describe the monitoring location and equipment selected for precipitation monitoring. Rainfall monitoring must be performed within the treatment system drainage basin or adjacent to monitoring equipment installed for the project. The actual rain gauge for this monitoring must be sited appropriately (e.g., away from large trees, out of the rain shadow of an adjacent building) to ensure accurate measurements. Rainfall monitoring must be performed to measure and record rainfall continuously throughout the study duration at 15-minute intervals or less. The QAPP must indicate the type of rain gauge used (e.g., an automatic recording electronic rain gauge, such as a tipping bucket connected to a data logger, that records rainfall in 0.01-inch increments) and make and model number of the selected rain gauge. The rain gauge location must be shown on the site schematic if it is located at the monitoring site or on the vicinity map if it is located in another portion of the drainage basin.

If the onsite rainfall monitoring equipment fails during a storm event, the proponent should use data from the next closest, representative monitoring station to determine whether the storm event meets the defined storm guidelines. Nearby third-party rain gauges may be used only in the event of individual rain gauge failure and only for the period of failure. The location of third-party rain gauges that will be used for this purpose should be identified in the QAPP. If third-party rain gauges are used to fill in data gaps, the proponent will be required to establish a regression relationship for individual storm events between the site and third-party rain gauges and use the regression equation to adjust the third-party data to represent site rainfall when needed.

Flow monitoring

This section of the QAPP must describe monitoring locations and equipment selected for flow monitoring. This section must also include guidelines used to ensure that the flow monitoring experimental design is representative, comparable, and complete.

Monitoring locations and equipment

Influent, effluent, and bypass flow rates must be measured continuously throughout the duration of the study. If the proponent can demonstrate in the QAPP that the influent and effluent flow rates are equivalent (or lag time is minimal), Ecology may allow monitoring of either influent or effluent only. That allowance notwithstanding, for offline systems or those with bypasses, flow must be measured at the bypass as well as at the inlet and outlet. For offline flow, the proponent must describe the type of flow splitter that will be used and specify the bypass flow set point.

The following requirements apply when selecting specific locations for flow monitoring:

- **Influent**: Measure flow as close as possible to the treatment system inlet to ensure that the depth and flow measurements represent the water that actually enters the system. The influent flow should be measured in or adjacent to the treatment system.
• **Effluent:** Measure flow as close as possible to the treatment system outlet to ensure that the depth and flow measurements represent the water leaving the treatment system. Do not measure effluent flow in areas of the conveyance system that are mixed with bypass flows.

• **Bypass:** The proponent must measure all bypass flows to determine if the stormwater treatment technology meets the requirements for water quality treatment specified by Ecology (i.e., treating at least 91 percent of the total runoff volume). Do not measure bypass flows in areas of the conveyance system that are mixed with effluent flow.

The QAPP must also identify site conditions (e.g., tidal influence, backwater conditions, or high groundwater levels) that could affect flow measurement accuracy. Ecology recommends that monitoring sites be established at locations where gravity flow conditions exist, because obtaining accurate flow measurements with existing flow measuring equipment under backwater conditions is difficult. All flow measurement equipment should be installed in locations that can be accessed easily and safely. Because this equipment requires frequent calibration and maintenance, it must be directly accessible over the course of the monitoring.

Flow monitoring equipment must be selected to continuously measure and record flow into and out of the treatment system over the entire study duration. Flow must be logged at a 15-minute or shorter interval, depending on site conditions. The appropriate flow measurement method depends on the nature of the monitoring site and the stormwater drainage system. Depth measurement devices and velocity measurement devices are commonly used types of flow measurement equipment. The QAPP should identify the make and model number of the selected flow monitoring equipment. Additionally, the flow monitoring equipment locations must be identified in the QAPP on the site schematic in plan and profile.

Water sampling

This section of the QAPP must describe monitoring locations and equipment, sampling methodology, monitoring parameters, and the monitoring duration for water sampling. This section must also include guidelines used to ensure that the water sampling experimental design is representative, comparable, and complete.

Monitoring locations and equipment

To accurately measure system performance, water quality samples must be collected from both the inlet and outlet of each treatment system. The proponent is not required to measure water quality parameters in the bypass flow. Automated samplers should be used for sample collection, except for chemical constituents that require manual grab samples (e.g., NWTPH-Dx, Fecal Coliform, and E. coli) or field meters (e.g., pH). Tygon or Teflon tubing may be used for sampling conventional parameters and metals. The QAPP should also identify the make and model number of the selected automated sampling equipment and the pH field meter. In addition, the automated sampler locations must be identified in the QAPP on the site schematic.

When selecting monitoring locations, the proponent should be aware that settleable or floating solids, and their related bound pollutants may become stratified across the flow column in the absence of adequate mixing. Influent and effluent samples must be collected at a location where the stormwater flow is well-mixed. The following requirements apply when selecting specific locations for water sampling:
The rationale for selecting specific sampling locations must be documented in the QAPP.

Sampling methodology

Automated sampler programming (e.g., flow-proportional versus discrete sampling, proposed sampling triggers, and flow pacing scheme) must be included in the QAPP. Proponents should refer to the *Standard Operating Procedure for Automatic Sampling for Stormwater Monitoring* (Ecology 2009a) and the *Standard Operating Procedure for Collecting Grab Samples from Stormwater Discharges* (Ecology 2009b) when developing this section of the QAPP. Ecology has identified the following five sampling methods for evaluating emerging stormwater treatment technologies. Sampling methods 1, 2, and 3 are required for all monitoring programs. Sampling methods 4 and 5 are not commonly used, but can be an alternative method to sampling method 1.

1. **Automated flow-proportional composite sampling:** Using this method, the proponent will use an automated sampler to collect samples over the storm-event duration and composite them in proportion to flow. This sampling method generates EMCs that will be used to determine whether the treatment system meets Ecology’s performance goals. The influent concentration ranges specified in Table 2 and the sample collection requirements specified in Table 6 must be met in order to generate a valid sample. The storm event guidelines identified in Table 5 should also be evaluated to assess the validity of collected samples. This method is appropriate for short detention flow-through systems where effluent flows are controlled by the function of the treatment system. Laboratory testing cannot be used to replace automated flow-proportional composite sampling.

2. **Grab sampling:** This sampling method is required to satisfy the oil treatment performance goal monitoring requirements and for bacteria samples (fecal coliform and E. coli) collected to meet the screening parameter requirement. TPH (e.g., NWTPH-Dx) and bacteria samples cannot be collected using an automated sampler and must be collected as grab samples. The QAPP must describe how grab samples will be collected during the storm event. If possible, grab samples should be collected on the rising limb of the storm event hydrograph. For TPH samples, a minimum of one grab sample should be collected per storm event; however, a minimum of 15 valid storm events must be sampled to meet the oil treatment requirements. For bacteria samples, three samples should be collected during the monitoring period and analyzed for fecal coliform and E. coli, as outlined in Table 8.

3. **In situ sampling:** This sampling method is required for all monitoring programs. pH measurements should be collected in situ using a field meter.
4. **Discrete flow sampling:** This method is an optional alternative to sampling method 1. Using this method, the proponent will use an automated sampler using a multi-bottle rack to collect discrete flow-proportional or time composite samples at a relatively constant inflow (e.g. less than 20% variation from the median flow). Targeted inflow rates shall be between 50-125% of the design hydraulic loading rate.

This sampling method must also address the effect of lag time within the treatment system that would affect the comparability of influent and effluent samples paired to evaluate a particular flow rate. The proponent must account for the lag time based on the detention volume of the treatment technology by collecting samples for the duration of time it takes 8 detention volumes of water to pass through the test unit.

This method is applicable to flow-through systems (e.g., minimal hydraulic residence time at the design hydraulic loading rate) and treatment systems with nearly equal influent and effluent flow rates (e.g., hydrodynamic separators) to evaluate pollutant removal as a function of flow rate. The influent concentration ranges specified in Table 2 and the sample collection requirements specified in Table 7 must be met in order to generate a valid sample. The storm event guidelines identified in Table 5 should also be evaluated to assess the validity of collected samples. Laboratory testing data can be used to supplement or replace discrete flow sampling.

5. **Combination method:** This method is an optional alternative to sampling method 1. For flow-through systems, proponents can use a combination of sampling methods 1 and 4 to evaluate the EMC and performance of the treatment system at specific flow rates. For the combination method, the proponent will collect discrete flow samples during a single storm event using sampling method 4 and analyze the samples that meet the targeted flow rates (50 to 125% of the design hydraulic loading rate). The remaining bottles (not set aside for analysis based on the targeted flow rates) will be composited in a separate bottle to form a single flow-proportional composite sample representing the remainder of the storm event. The results from the discrete flow samples and the single flow-proportional composite sample will be mathematically combined to determine the overall EMC. The influent concentration ranges specified in Table 2 and the sample collection requirements specified in Table 6 must be met in order to generate a valid sample. The storm event guidelines identified in Table 5 should also be evaluated to assess the validity of collected samples.

Monitoring parameters
The QAPP must identify the required water quality parameters to be monitored from Table 8. The proponent must tailor the sampling regime to support the desired treatment level (basic, dissolved metals, phosphorus, oil, or pretreatment). The performance claims may be evaluated in relation to one or more of the parameters listed in the tables below. Proponents must analyze applicable parameters listed in Table 8 at both the inlet and outlet sampling stations.
Table 8. Required Water Quality Parameters for TAPE Monitoring

<table>
<thead>
<tr>
<th>Performance Goal</th>
<th>Required Performance Goal Parameters</th>
<th>Required Screening Parameters a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic and pretreatment</td>
<td>TSS</td>
<td>PSD, pH b, TP, orthophosphate, TKN, nitrate-nitrite, hardness, total and dissolved Cu and Zn, fecal coliform c, E. coli c</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>TSS, TP, orthophosphate</td>
<td>PSD, pH b, TKN, nitrate-nitrite, hardness, total and dissolved Cu and Zn, fecal coliform c, E. coli c</td>
</tr>
<tr>
<td>Dissolved metals</td>
<td>TSS, hardness, total and dissolved Cu and Zn</td>
<td>PSD, pH b, TP, orthophosphate, TKN, nitrate-nitrite, fecal coliform c, E. coli c</td>
</tr>
<tr>
<td>Oil</td>
<td>NWTPH-Dx c</td>
<td>pH b, TP, orthophosphate, TKN, nitrate-nitrite, hardness, total and dissolved Cu and Zn, fecal coliform c, E. coli c</td>
</tr>
</tbody>
</table>

a Screening parameters are required to be analyzed on three of the composite samples (or three in situ samples for pH) collected during the monitoring period (preferably spread throughout the monitoring period, with one sample collected towards the beginning, one in the middle, and one towards the end). Proponents may also choose to analyze the screening parameters for additional storm events.

b In situ sample only. If a substantial change in pH is measured (> 1 standard unit difference between influent and effluent measurements) or an abnormal pH value is measured (< 4 or > 9 standard units), additional storm events must be monitored.

c Grab sample only.

Cu – copper
NWTPH-Dx – Northwest Total Petroleum Hydrocarbons-Motor Oil and Diesel fractions
PSD – particle size distribution
TP – total phosphorus
TKN – total Kjeldahl nitrogen
TSS – total suspended solids
Zn – zinc

Required screening parameters must also be collected from all treatment systems during three storm events during the monitoring period (preferably spread throughout the monitoring period, with one sample collected towards the beginning, one in the middle, and one toward the end) in order to determine if the treatment system could potentially export phosphorus, bacteria (fecal coliform or E. coli), or metals or cause a change in pH. The results from the screening parameter analysis will be used to determine if restrictions may be required for specific treatment systems based on their effluent quality, or if pH adjustment is a necessary component of the treatment system. PSD analysis is also listed as a required screening parameter to determine if the influent PSD to the treatment system consists primarily of silt-sized particles (i.e., 3.9 to 62.5 microns) and thus is representative of Pacific Northwest stormwater. PSD data can also provide information regarding solids transport during a storm.

Monitoring duration
As indicated in Table 6, a minimum of 15 flow-proportional composite samples must be collected to ensure representative concentrations are available for assessing system performance across a variety of storm event conditions. However, there is no maximum number of samples specified under this protocol. Rather, sampling must continue until enough samples have been collected to demonstrate performance of the system at the required level of statistical confidence for obtaining a GULD. In all cases, samples must fall within the influent concentration ranges specified in Table 2 and meet the sample collection requirements specified in Tables 6 and 7 for flow-proportional composite and discrete flow samples, respectively. The storm event guidelines identified in Table 5 should also be evaluated to assess the validity of collected samples.
Sediment measurement and sampling

The proponent must measure the sediment accumulation rate (if feasible, based on the design of the stormwater treatment technology) to help demonstrate facility performance and design an operation and maintenance plan. Optimally, the test system should be cleaned at the beginning of the monitoring period. The sediment depth should then be measured just prior to any subsequent cleanings during the monitoring period and at the end of the monitoring period. This information shall then be used to verify the proponent’s maintenance schedule for the system is reasonably accurate.

Although sediment sampling and sediment chemistry analysis is not required by this protocol, it may be useful to help in developing an operation and maintenance plan and disposal requirements. Table 9 lists parameters for the optional sediment chemistry analysis. Refer to Measurements Procedures for a detailed listing of chemical analyses, methods, and reporting limits.

Table 9. Optional Sediment Sampling Parameters for TAPE Monitoring

<table>
<thead>
<tr>
<th>Performance Goal</th>
<th>Optional Parameters a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic and pretreatment</td>
<td>PSD, percent solids, grain size, percent volatile solids</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>PSD, TP</td>
</tr>
<tr>
<td>Dissolved metals</td>
<td>PSD, total Cd, Cu, Pb, and Zn</td>
</tr>
<tr>
<td>Oil</td>
<td>PSD, NWTPH-Dx</td>
</tr>
</tbody>
</table>

a Not all stormwater treatment facilities are designed to facilitate this type of sediment sampling; however, accumulated sediment sampling may be beneficial to assist the proponent with developing an operation and maintenance plan and disposal requirements.

Cd – cadmium
Cu – copper
NWTPH-Dx – Northwest Total Petroleum Hydrocarbons-Motor Oil and Diesel fractions
Pb – lead
PSD – particle size distribution
TP – total phosphorus
Zn – zinc

Supplemental laboratory testing procedures

Laboratory testing can be used to augment field monitoring, but cannot replace it. The minimum number of automated flow-proportional composite samples meeting the performance goals with the required statistical confidence is still required to be collected in the field, and performance goals must be met with those data. However, peak design and higher flow rates may not be observed in the field, thus supplemental laboratory testing may be applied to augment or replace that portion of the field monitoring.

The proponent must provide detailed laboratory testing descriptions (e.g., photos, illustrations, process/flow diagrams), including all relevant factors such as treatment and hydraulic design flow and loading rates on a unit basis (e.g., gallons per minute per square foot), dead storage/detention volumes, inspection protocols to determine when maintenance is needed, maintenance performed during testing, and media type/quantity/thickness. If a less than full-scale
unit is tested in the laboratory, such as single cartridge testing, the proponent must describe the ratios to the full-scale system (e.g., sump capacity, flow paths, material differences).

Laboratory testing must be conducted under the following conditions:

- Tests must be run at a minimum of four constant flow rates of 50 percent, 75 percent, 100 percent, and 125 percent (plus or minus 10 percent) of the manufacturer’s facility design hydraulic loading rate or design hydraulic velocity rate.
- Proponents must use Sil-Co-Sil 106 ground silica, a readily available ground silica product manufactured by U.S. Silica Corporation, to represent a typical PSD for testing basic treatment technologies.
- Influent concentrations used for the laboratory analysis should be similar to the TSS concentrations measured during field monitoring and must meet the influent concentration range specified in Table 2.
- Basic treatment systems must be able to remove at least 80 percent of Sil-Co-Sil 106 particles at the water quality design hydraulic loading rate, and pretreatment systems must be able to remove at least 50 percent of Sil-Co-Sil 106 particles at the water quality design hydraulic loading rate.

Filters or settling chambers must not be cleaned between tests, unless required under the proponent’s normal operation and maintenance schedule. Proponents must test the facility’s maximum hydraulic loading rate to check for TSS resuspension and washout (negative removal efficiency). The laboratory testing must be conducted with the facility’s treatment capability fully utilized (e.g., at the time maintenance would normally be performed, such as when the sediment settling area is full or filter media is saturated). The proponent should determine the flow rate where washout begins, and provide for bypassing flows exceeding this flow rate in design guidelines.

Proponents may also analyze for parameters other than TSS during laboratory testing. The proponent must consult with Ecology on test methods before initiating work. The laboratory testing procedures must be presented in the QAPP or a QAPP amendment (if laboratory testing is deemed necessary to supplement field monitoring data after the field monitoring portion of the project has been completed).

Sampling procedures

This section of the QAPP describes field sampling procedures necessary to ensure the quality and representativeness of the collected samples. This section includes information on precipitation monitoring, flow monitoring, water sampling, and sediment sampling.

Precipitation monitoring

The proponent must install and calibrate the rain gauge in accordance with manufacturer’s instructions, inspect the rain gauge monthly (at a minimum), and perform maintenance on the rain gauge (if necessary). Rain gauge calibration should be checked upon installation and once annually (at a minimum). This section of the QAPP should describe the specific steps that will be performed during these activities.
Flow monitoring
The proponent must install and calibrate monitoring equipment in accordance with manufacturer’s instructions, inspect equipment after each sampled storm event (at a minimum), and perform maintenance on the equipment (if necessary). This section of the QAPP should discuss the specific measures taken during pre-storm visits to remove blockages from the conveyance system, check the operational status of the flow monitoring equipment, and calibrate sensors installed at the inlet, outlet, and bypass monitoring stations. Flow monitoring equipment calibration should be checked upon installation and monthly throughout the monitoring period (at a minimum). Control charts and other quality assurance measures should be used to track instrument drift. Control limits (statistical warning and action limits calculated based on control charts) should be established to track instrument drift. Warning limits are generally set at ±2 standard deviations from the mean and action limits at ±3 standard deviations from the mean. Flumes used in conjunction with flow monitoring may not match factory specification, become distorted during installation, be installed incorrectly, or settle unevenly over time; all of which will affect flow measurements. Dynamic in-situ flow calibration is recommended to address these issues.

Water sampling
This section of the QAPP must discuss equipment decontamination, sample preservation and handling, and recordkeeping.

Sample preservation and handling
Proponents should preserve samples in accordance with U.S. EPA-approved methods (U.S. EPA 1983) or Standard Methods (APHA, AWWA, WEF 2012). For composite samples that will be split into separate aliquots for preservation and/or analysis, maintain the sample at ≤ 6 degrees Celsius (°C) until collection, splitting, and preservation is completed (40 CFR 136.3). Holding times before and after sample preservation and filtration should be observed and must be recorded. Automated samplers must be filled with ice or refrigerated to maintain low temperatures throughout the sample collection period. The chain-of-custody form for composite samples must include the date and time of the last aliquot collection and the date and time of filtration or preservation (if applicable). The analytical laboratory needs this information to determine if a holding time has been exceeded.

The QAPP must include a table listing analytical container material, minimum required sample volume, sample preservation requirements, and pre- and post-preservation holding time limits for the analyzed pollutants (see example in Table 10). A similar table should be developed for sediment sampling if optional sediment sampling will be conducted. The minimum required sample volume can vary based on the laboratory, methodology, and sampling configuration selected, thus it is not included in Table 10. Additional sample volume may be required for laboratory quality assurance and quality control (QA/QC) samples. Proponents should check with their selected laboratory to determine the minimum required sample volume for each parameter to be analyzed and list this volume in the QAPP. Proponents should obtain pre-cleaned sample bottles directly from the analytical laboratory. If the proponent proposes to obtain bottles from another source, a detailed bottle cleaning procedure must be provided in the QAPP. The QAPP must also describe procedures that will be employed to label and track samples from collection through delivery to the analytical laboratory, and include a sample chain-of-custody form.
Equipment decontamination
The QAPP must describe how water sampling equipment (sampler head and suction tubing) and sediment sampling equipment (stainless steel bowls and scoops) will be decontaminated between sampling events and how frequently the suction tubing will be replaced to prevent contamination. It is recommended that the tubing be replaced at least once during the monitoring period and more frequently for highly contaminated runoff.

Recordkeeping
The QAPP must also include a standardized field form that will be used for the project to record any relevant information noted at the collection time or during site visits. The field form should include at least the following information:

- Date and time
- Field staff names
- Weather conditions
- Number of samples collected
- Sample description and label information
- Field measurements
- Field QC sample identification
- Sampling equipment condition
- Instrument calibration procedures
- Measurements of sediment accumulation

The field form should also include space for notations about activities or issues that could affect the sample quality (e.g., sample integrity, test site alterations, maintenance activities, improperly functioning equipment, construction activities, reported spills, and other pollutant sources).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample Container</th>
<th>Preservative a</th>
<th>Pre-filtration Holding Time</th>
<th>Total Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS P, FP, G</td>
<td>Cool, ≤6°C</td>
<td>NA</td>
<td>7 days</td>
<td></td>
</tr>
<tr>
<td>PSD P</td>
<td>Cool, ≤6°C</td>
<td>NA</td>
<td>7 days</td>
<td></td>
</tr>
<tr>
<td>pH NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>TP P, FP, G</td>
<td>Cool, ≤6°C; H₂SO₄ to pH < 2</td>
<td>NA</td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate P, FP, G</td>
<td>Cool, ≤6°C; filtration, 0.45 µm</td>
<td>12 hours b</td>
<td>48 hours</td>
<td></td>
</tr>
<tr>
<td>TKN P, FP, G</td>
<td>Cool, ≤6°C; H₂SO₄ to pH < 2</td>
<td>NA</td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Nitrate-Nitrite P, FP, G</td>
<td>Cool, ≤6°C; H₂SO₄ to pH < 2</td>
<td>NA</td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Dissolved copper and zinc P, FP, G</td>
<td>Cool, ≤6°C; filtration, 0.45 µm; HNO₃ to pH<2</td>
<td>12 hours b</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>Total copper and zinc P, FP, G</td>
<td>Cool, ≤6°C; HNO₃ to pH<2</td>
<td>NA</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>Hardness P, FP, G</td>
<td>HNO₃ or H₂SO₄ to pH < 2</td>
<td>NA</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>NWTPH-Dx G</td>
<td>Cool, ≤6°C; HCl to pH < 2</td>
<td>NA</td>
<td>14 days c</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform G</td>
<td>Cool, 10°C, 0.0008% Na₂S₂O₃</td>
<td>NA</td>
<td>8 hours d</td>
<td></td>
</tr>
<tr>
<td>E. coli G</td>
<td>Cool, 10°C, 0.0008% Na₂S₂O₃</td>
<td>NA</td>
<td>8 hours d</td>
<td></td>
</tr>
</tbody>
</table>

Source: Ecology (1997, 2004) and 40 CFR 136.3, Table II

a For composite samples that will be split into separate aliquots for preservation and/or analysis, maintain the sample at ≤ 6°C until collection, splitting, and preservation is completed (40 CFR 136.3).

b Pre-filtration holding times of 15 minutes for dissolved metals and orthophosphate are recommended in U.S. EPA (1983) and required in 40 CFR 136.3, Table II; however, these holding times cannot be realistically met with flow proportional automated sampling techniques. Consequently, a surrogate holding time of 12 hours from the time that the last aliquot was collected can be used for this monitoring. Ecology will accept data qualified as an estimate (J) if filtration (at the laboratory or in the field) occurred between 15 minutes and 12 hours after the last aliquot was collected.

c If the sample is preserved, the 14-day holding time applies. If unpreserved, the holding time is only 7 days (Ecology 1997).

d Sample analysis should begin immediately, preferably within 2 hours of collection. The maximum transport time to the laboratory is 6 hours, and samples should be processed within 2 hours of receipt at the laboratory.

FP – fluoropolymer (polytetrafluoroethylene [PTFE, Teflon] or other fluoropolymer)
G – glass
HCl – hydrochloric acid
H₂SO₄ – sulfuric acid
HNO₃ – nitric acid
L – liters
mL – milliliters
NA – not applicable
NWTPH-Dx – Northwest Total Petroleum Hydrocarbons-Motor oil and Diesel fractions
P – polyethylene
PSD – particle size distribution
TKN – total Kjeldahl nitrogen
TP – total phosphorus
TSS – total suspended solids
Sediment sampling

The QAPP must provide a detailed description of the sediment sampling procedures, if collecting accumulated sediment is feasible. The sediment deposited in the system should also be removed and weighed. The proponent should provide a qualitative estimate of gross solids collected (i.e., debris, litter, and other large particles). Volumetric sediment measurements and analyses should be used to assist with determining operation and maintenance requirements, calculating a TSS mass balance, and determining if the sediment quality and quantity are typical for the application.

If sediment sampling is feasible and the proponent wishes to (optionally) evaluate sediment chemistry to assist with developing an operation and maintenance plan and disposal requirements, the QAPP must also provide a detailed description of the sediment sampling procedures for this portion of the analysis. To sample accumulated sediment, the proponent should collect at least four grab samples from multiple locations within the treatment system using a stainless steel scoop. Subsamples should be composited to create a single composite sample for analysis, and should be collected in a manner such that the composite sample is representative of all the accumulated sediment in the system. This methodology will ensure that the sample represents the total sediment volume in the treatment system. For QA/QC purposes, proponents must also collect a field duplicate sample (see following section on field QA/QC). The sediment sample should be kept at 6°C during transport and storage before analysis.

Measurement procedures

This section of the QAPP focuses on laboratory procedures for water and sediment analysis. Laboratories must be certified by a national or state agency that regulates laboratory certification or accreditation programs. For test sites located in the state of Washington, proponents must complete all laboratory work at an Ecology-accredited laboratory. For a list of Ecology-accredited laboratories, see: http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html.

Water sampling

A table (see example in Table 11) must be provided in the QAPP that includes the following information:

- Parameter
- Sample matrix (water)
- Analytical method (include preparation procedures as well as specific methods especially when multiple options are listed in a method)
- Reporting limits for each given analytical method (include the associated units)

Reports obtained from the laboratory must include the sampling date, the preservation date (if applicable), the filtration date (if applicable), the extraction date, the analysis date, and indicate if the sample is a QC sample.
Table 11. Reporting Limits and Analytical Methods for Water Quality Parameters

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Method (in water)</th>
<th>Reporting Limit Target a,b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>TSS</td>
<td>SM 2540B or SM 2540D Modified SSC method (based on ASTM Method D3977-97)</td>
<td>1.0 mg/L NA</td>
</tr>
<tr>
<td></td>
<td>PSD</td>
<td>Modified SSC method (based on ASTM Method D3977-97)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>EPA Method 150.2</td>
<td>0.2 units 1.0 mg/L</td>
</tr>
<tr>
<td></td>
<td>Hardness as CaCO₃</td>
<td>EPA Method 200.7, SM 2340B (ICP), SM 2340C (titration), or SM 3120B</td>
<td></td>
</tr>
<tr>
<td>Nutrients</td>
<td>TP</td>
<td>EPA Method 365.3, EPA Method 365.4, SM 4500-P E, or SM 4500-P F, or SM 4500-P B</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td></td>
<td>Orthophosphate</td>
<td>EPA Method 365.3, EPA Method 365.1, SM 4500-P E, or SM 4500-P F, or SM 4500-P B</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td></td>
<td>TKN</td>
<td>EPA Method 351.2 or SM 4500 Norg-D</td>
<td>0.5 mg/L 0.01 mg/L</td>
</tr>
<tr>
<td></td>
<td>Nitrate-Nitrite</td>
<td>EPA Method 353.2 or SM 4500 –NO₃⁻</td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td>Total recoverable Zn</td>
<td>EPA Method 200.8 (ICP/MS) or SM 3125 (ICP/MS)</td>
<td>5.0 µg/L 5.0 µg/L 0.5 µg/L 0.5 µg/L</td>
</tr>
<tr>
<td></td>
<td>Dissolved Zn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total recoverable Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dissolved Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum</td>
<td>NWTPH-Dx</td>
<td>Ecology 1997 (Publication No. 97-602) or EPA SW-846 method 8015B</td>
<td>0.25-0.50 mg/L</td>
</tr>
<tr>
<td>hydrocarbons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteria</td>
<td>Fecal Coliform</td>
<td>SM 9222D</td>
<td>1 CFU/100 ml</td>
</tr>
<tr>
<td></td>
<td>E. coli</td>
<td>SM 9223B</td>
<td>1 CFU/100 ml</td>
</tr>
</tbody>
</table>

a Reporting limit targets established as per the Phase I Municipal Stormwater Permit (Ecology 2012b). To the extent possible, reporting limits for the laboratory selected by the proponent should be the same or below those given in the table.

b All results below reporting limits should also be reported and identified as such. These results may be used in the statistical evaluations.

c To ensure accurate results, Ecology recommends modifying these methods to analyze (filter) the entire field sample. Research indicates that errors may be introduced by decanting a subsample, although using a funnel splitter may help. The analyst may also consider analyzing several premixed subsamples from the sample container to determine if significant variability occurred due to stratification. Reports shall indicate whether the entire field sample or a subsample was analyzed.

d Ecology recognizes that few labs are accredited for ASTM D3977-97 for PSD analysis. If a lab is not accredited for ASTM D3977-97, Ecology will still accept PSD samples analyzed by that lab if they are able to follow the method and are accredited for soil and sediment analysis.

CaCO₃ – calcium carbonate
Cu – copper
ICP – Inductively Coupled Plasma
ICP/MS – Inductively Coupled Plasma/Mass Spectrometry
NA – not applicable
NWTPH-Dx – Northwest Total Petroleum Hydrocarbons-Motor oil and Diesel fractions
PSD – particle size distribution
SM – Standard Methods
TKN – total Kjeldahl nitrogen
TP – total phosphorus
TSS – total suspended solids
Zn – zinc
mg/L – milligrams per liter
µg/L – micrograms per liter
The recommended PSD analysis method is a modified Suspended Sediment Concentration (SSC) Method according to American Society for Testing and Materials (ASTM) Method D3977-97 (ASTM 2007) using wet sieve filtration (Method C) and glass fiber filtration (Method B). The SSC method uses wet sieve filtration (Method C) to measure the sand concentration by passing the entire sample (minimum volume of 1 liter) through a 62.5 micron (No. 230) sieve, and uses glass fiber filtration (Method B) to measure the fines (silt/clay) concentration by passing the wet sieve filtrate through a 1.5 micron glass fiber filter. A modification of this procedure is necessary to measure the concentration of four size categories: clay less than 3.9 microns, silt between 3.9 to 62.5 microns, very fine to fine sand between 62.5 and 250 microns, and medium to coarse sand greater than 250 microns (No. 60 sieve). The required PSD size fractions and their associated sieve sizes are summarized in Table 12.

Table 12. Required Particle Size Distribution Size Categories for the Modified Suspended Sediment Concentration Method

<table>
<thead>
<tr>
<th>Size Category (µm) a,b</th>
<th>Particle Description</th>
<th>Analysis Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 250</td>
<td>Medium sand and larger</td>
<td>Retained on No. 60 sieve</td>
</tr>
<tr>
<td>62.5 - 250</td>
<td>Very fine to fine sand</td>
<td>Passing No. 60 sieve and retained on No. 230 sieve</td>
</tr>
<tr>
<td>3.9 - 62.5</td>
<td>Silt</td>
<td>Passing No. 230 sieve and retained on 4-5 µm glass fiber filter</td>
</tr>
<tr>
<td>< 3.9</td>
<td>Clay</td>
<td>Passing 4-5 µm glass fiber filter and retained on 1 µm glass fiber filter</td>
</tr>
</tbody>
</table>

a Size categories based on the Wentworth (1922) grade scale.
b Additional size categories may be added to the analysis if the proponent would like to acquire additional particle size distribution data.
c Sieve sizes based on ASTM standard sieve sizes

µm – microns

Further modification of the SSC method is allowed if additional size fractions are desired by the proponent for evaluating effects of particle size on pollutant removal. Analysis of additional sand fractions may be conducted by using two additional sieves (No. 125 and 500 microns) in the wet sieve filtration to differentiate between very fine and fine sand (125 microns, No. 120 sieve) and between medium and coarse sand (500 microns, No. 35 sieve). The analysis of the silt and clay fractions may also be conducted by laser diffraction to determine the percentages of coarse silt (62.5-31.25 microns), medium silt (31.25-15.6 microns), fine silt (15.6-7.8 microns), very fine silt (7.8-3.9 microns), and clay (<3.9 microns). These size categories are based on the Wentworth (1922) grade scale.

Sediment sampling

If optional sediment sampling is performed, a table (see example in Table 13) must be provided in the QAPP that includes the following information:

- Parameter
- Sample matrix (sediment)
- Analytical method (include preparation procedures as well as specific methods especially when multiple options are listed in a method)
- Reporting limits for each given analytical method (include the associated units)
The proponent must include the sampling date, the preservation date if applicable, the extraction date, the analysis date, and whether the sample is a QC sample on each laboratory sheet.

Table 13. Reporting Limits and Analytical Methods for Optional Sediment Parameters

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Method (in Sediment)</th>
<th>Reporting Limit Target a,b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent volatile solids</td>
<td></td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td>Grain size</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Conventional</td>
<td>Total phosphorus</td>
<td>EPA Method 200.7, SW-6020</td>
<td>0.01 mg/kg</td>
</tr>
<tr>
<td>Metals</td>
<td>Total recoverable zinc</td>
<td>EPA Method 200.8 (ICP/MS), EPA Method 6160, EPA Method 6020, SM 3125 (ICP/MS), or EPA Method 200.7 (ICP)</td>
<td>5.0 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Total recoverable lead</td>
<td>EPA Method 200.8 (ICP/MS), EPA Method 6160, EPA Method 6020, or SM 3125 (ICP/MS)</td>
<td>0.1 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Total recoverable copper</td>
<td>EPA Method 200.8 (ICP/MS), EPA Method 6160, EPA Method 6020, or SM 3125 (ICP/MS)</td>
<td>0.1 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Total recoverable cadmium</td>
<td>EPA Method 200.8 (ICP/MS), EPA Method 6160, EPA Method 6020, or SM 3125 (ICP/MS)</td>
<td>0.1 mg/kg</td>
</tr>
<tr>
<td>Petroleum hydrocarbons</td>
<td>NWTPH-Dx</td>
<td>Ecology 1997 (Publication No. 97-602) or EPA SW-846 method 8015B</td>
<td>25.0-100.0 mg/kg</td>
</tr>
</tbody>
</table>

*a Reporting limit targets established as per the Phase I Municipal Stormwater Permit (Ecology 2012b). Reporting limits may vary with each lab. To the extent possible, reporting limits for the laboratory selected by the proponent should be the same or below those given in the table.

b All results below reporting limits shall also be reported and identified as such. These results may be used in the statistical evaluations.

ICP/MS – Inductively Coupled Plasma/Mass Spectrometry
NA – not applicable
NWTPH-Dx – Northwest Total Petroleum Hydrocarbons-Motor Oil and Diesel fractions
PSEP – Puget Sound Estuary Program
SM – Standard Methods
SW – Solid Waste
mg/kg – milligrams per kilogram

Quality control

This section of the QAPP includes information on field QA/QC and laboratory quality control.

Field quality assurance and quality control

The field QA/QC section of the QAPP must describe the measures that the proponent will employ to ensure the representativeness, comparability, and quality of field samples. Field QA/QC must include the following elements:

- Quality control (QC) samples
- Equipment maintenance and calibration
- Equipment decontamination (see Sampling Procedures)
- Sample preservation and handling (see Sampling Procedures)
- Recordkeeping (see Sampling Procedures)
Quality control samples
The field QC samples that should be collected by the proponent include equipment rinsate blanks and field duplicate samples. The QAPP must also include a table specifying the frequency and type of quality control to be performed with each batch of samples to be analyzed (see example in Table 14). Additional field QC samples (e.g., transport blanks, transfer blanks, filter blanks, field reagent blanks) may also be analyzed, but are not specifically required by this protocol.

Equipment rinsate blanks
The proponent must collect equipment rinsate blanks to verify the adequacy of the decontamination process. This verifies that the equipment is not a source of sample contamination. The proponent should collect equipment rinsate blanks by passing reagent-grade water through clean equipment and collecting samples for chemical analyses. The amount of reagent-grade water used for the sample should represent the volume of stormwater that will be collected during a typical sampling event. These samples should be analyzed as regular samples, with all of the appropriate quality control performed.

Equipment rinsate blanks should be collected at the inlet monitoring station where stormwater is expected to contain the highest contaminant concentrations. However, if the inlet station is difficult to access (e.g., confined space entry required), proponents may collect the rinsate blank from the outlet station. At a minimum, proponents must collect three rinsate blanks:

- One rinsate blank after decontaminating the equipment, according to the procedures specified in the QAPP during initial equipment startup
- One rinsate blank after the first or second storm event, following the initial equipment startup (to “contaminate” the equipment)
- One rinsate blank at the end of the monitoring program

The QAPP must describe the location and number of rinsate blanks that will be collected, sample collection and processing procedures, and sample documentation (e.g., length of time that sampler was in place before collecting the blank, and volume of stormwater that passed through the sampler before cleaning the equipment).

If any parameters are detected at levels greater than the reporting limit in the equipment rinsate blank, the field sampling crew should be notified so that the source of contamination can be identified and corrective actions taken prior to the next sampling event. The proponent should describe potential corrective actions in the QAPP (e.g., modifying decontamination procedures, replacing suction tubing, altering the reporting limit for samples already collected).

If the concentration in the associated composite samples is less than ten times the value in the equipment rinsate blank, the results for the collected samples may be unacceptably affected by contamination and should be qualified as appropriate. If contamination is detected, and the laboratory method blank results rule out the laboratory as a source of contamination, then equipment rinsate blanks must be collected at a rate of 100 percent of samples until the source of contamination is eliminated. Other types of field blanks that may help to locate the source of contamination include transport blanks, transfer blanks, and equipment rinsate blanks that isolate portions of the monitoring equipment (e.g., sample tubing, pump tubing). If the source of contamination cannot be located or eliminated, the proponent must inform Ecology and discuss options for continuing monitoring at the site.
Proponents should consider collecting more frequent rinsate blank samples following an event with unusually high contaminant concentrations.

Table 14. Example Quality Control Sample Summary for Water Quality Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Field</th>
<th>Laboratory Control Samples</th>
<th>Method Blanks</th>
<th>Laboratory Duplicates</th>
<th>MS/MSDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Rinsate Blanks</td>
<td></td>
<td>Field Duplicates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td>3</td>
<td>10% of samples</td>
<td>1/batch</td>
<td>1/batch</td>
<td>1/batch</td>
</tr>
<tr>
<td>PSD</td>
<td>NA</td>
<td>10% of samples</td>
<td>NA</td>
<td>NA</td>
<td>1/batch</td>
</tr>
<tr>
<td>pH</td>
<td>NA</td>
<td>10% of samples</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>TKN</td>
<td>3</td>
<td>10% of samples</td>
<td>1/batch</td>
<td>1/batch</td>
<td>1/batch</td>
</tr>
<tr>
<td>TP</td>
<td>3</td>
<td>10% of samples</td>
<td>1/batch</td>
<td>1/batch</td>
<td>1/batch</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>3</td>
<td>10% of samples</td>
<td>1/batch</td>
<td>1/batch</td>
<td>1/batch</td>
</tr>
<tr>
<td>Total and dissolved copper and zinc</td>
<td>3</td>
<td>10% of samples</td>
<td>1/batch</td>
<td>1/batch</td>
<td>1/batch</td>
</tr>
<tr>
<td>Hardness</td>
<td>3</td>
<td>10% of samples</td>
<td>1/batch</td>
<td>1/batch</td>
<td>1/batch</td>
</tr>
<tr>
<td>NWTPH-Dx</td>
<td>NA</td>
<td>10% of samples</td>
<td>1/batch</td>
<td>1/batch</td>
<td>1/batch</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>NA</td>
<td>10% of samples</td>
<td>1/batch</td>
<td>1/batch</td>
<td>1/batch</td>
</tr>
<tr>
<td>E. coli</td>
<td>NA</td>
<td>10% of samples</td>
<td>1/batch</td>
<td>1/batch</td>
<td>1/batch</td>
</tr>
</tbody>
</table>

MS – Matrix Spike
MSD – Matrix Spike Duplicate
NA – not applicable

NWTPH-Dx – Northwest Total Petroleum Hydrocarbons-Motor Oil and Diesel fractions
PSD – particle size distribution
TKN – total kjeldahl nitrogen
TP – total phosphorus
TSS – total suspended solids

* Required parameters for equipment rinsate blanks depend on the performance goals. For basic treatment and pretreatment, analyze rinsate blanks for TSS. For dissolved metals treatment, analyze rinsate blanks for TSS, total and dissolved copper, total and dissolved zinc, and hardness. For phosphorous treatment, analyze rinsate blanks for TSS, TP, and orthophosphate. No rinsate blanks are required for oil treatment unless supplementary equipment is used for sample collection (see footnote e).

b Samples are defined as the total number of influent and effluent samples collected (e.g., 5 storm events result in 10 samples). Duplicates must be analyzed for no fewer than 10 percent of samples (e.g., for anywhere between 21 and 30 samples, three duplicates would be required).

c Batches must consist of 20 or fewer samples.

d The field meter used for pH measurements should be calibrated before and after each use.

e If the proponent needs to use a sample pole and dipper to collect a sample in a deep manhole, three rinsate blanks would be required for NWTPH-Dx and bacteria samples.
Field Duplicate Samples

A field duplicate is a second independent sample collected at the same time and location as the original sample. Field duplicates are primarily used to assess the variation attributable to sample collection procedure and sample matrix effects. The QAPP must describe the technique that will be used to collect duplicate samples and specify the collection frequency. At a minimum, the proponent must collect field duplicates for 10 percent of the samples collected (i.e., 10 percent of the influent and effluent samples from all monitoring sites combined). The proponent may collect the duplicate sample at either the inlet or the outlet, however the inlet station is preferred unless pollutant concentrations at the outlet are regularly above the reporting limits.

Equipment maintenance and calibration

Equipment must be installed and maintained in accordance with the manufacturer’s recommendations, and the QAPP must indicate any deviations from these recommendations. An equipment maintenance schedule must be provided in this section of the QAPP that includes the field equipment calibration schedule and procedures for rain gauges, flow monitoring equipment, automated samplers, and pH field meters (see example in Table 15). It is recommended that the proponent use AC power whenever possible to avoid issues associated with power failure of battery-powered systems.

Laboratory quality control

In the laboratory QC section of the QAPP, the proponent must describe the laboratory’s data quality assurance summary package requirements (e.g., case narrative, performance evaluations [PE], certified reference materials [CRM], laboratory control samples, method blanks, MS/MSDs, laboratory duplicates, surrogates, and reference samples). Laboratory control samples, method blanks, laboratory duplicates, and MS/MSDs must be analyzed with each batch. For metals, at least two separate pairs of MS/MSDs per year should be performed on samples specifically from this project.

The QAPP must include a table listing all QC samples being performed (see example in Table 14). Quality control results may indicate problems with the data, thus corrective actions (e.g., re-calibrations, re-analyses of samples, need to re-sample, need for additional samples, or qualifying results) should be included in the QAPP.

Data management procedures

The QAPP must include requirements for the data package from the laboratory or laboratories selected for the project (e.g., detailed case narrative that discusses problems with the analyses, corrective actions if applicable, deviations from analytical methods, QC results, and a complete definitions list for each qualifier used). The QAPP must specify field/laboratory electronic data transfer protocols, state the percent of data that will undergo QC review, and describe corrective procedures. Corrections to data entries should include initials of the person making the correction and the date corrected. The QAPP must also indicate where and how the data will be stored.
Table 15. Example Equipment Maintenance and Calibration Schedule

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Item</th>
<th>Procedure</th>
<th>Minimum Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain gauge</td>
<td>Funnel and screen</td>
<td>Check for debris</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Level check</td>
<td>Verify level with bubble indicator</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td>Calibrate in accordance with manufacturer’s instructions</td>
<td>At installation and once annually</td>
</tr>
<tr>
<td>Flow monitoring</td>
<td>Desiccant</td>
<td>Check color – when pink, exchange for new desiccant</td>
<td>Every visit</td>
</tr>
<tr>
<td></td>
<td>Vent tubing</td>
<td>Check for obstructions</td>
<td>Every visit</td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td>Calibrate in accordance with manufacturer’s instructions</td>
<td>At installation and monthly</td>
</tr>
<tr>
<td>Automated sampler</td>
<td>Pump tubing</td>
<td>Check integrity</td>
<td>Every visit</td>
</tr>
<tr>
<td></td>
<td>Sample tubing and intake</td>
<td>Check integrity; verify no obstructions at intake</td>
<td>Every visit</td>
</tr>
<tr>
<td></td>
<td>Humidity indicator</td>
<td>Check surface indicator</td>
<td>Every visit</td>
</tr>
<tr>
<td>pH field meter</td>
<td>Calibration</td>
<td>Calibrate in accordance with manufacturer’s instructions</td>
<td>Before and after each use</td>
</tr>
</tbody>
</table>

Audits and reports

This section of the QAPP must include information on technical systems audits (qualitative) and proficiency audits (quantitative). Both types of audits are described in the *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies* (Ecology 2004). This section must also provide a basic outline of the information that will be included in the TER that will be prepared at the completion of the monitoring program and submitted to Ecology (see detailed description of required content in *Preparing a TER*).

Data verification and validation

The QAPP must describe the process that will be used to verify and validate the hydrologic and water quality data. The proponent should review all data to ensure they are consistent, correct and complete, and that all required quality control information has been provided. Specific quality control elements for the data must also be examined to determine if the MQOs for the project have been met.

Data quality assessment

This section of the QAPP must describe the data quality assessment procedures that will be used to establish the usability of the data. If the MQOs have been met, then data quality should be usable for meeting project objectives. If the MQOs have not been met for data (i.e., the data have been qualified), the proponent will need to determine if they are still usable. The data quality assessment procedures must include an assessment of whether the requirements for representativeness, completeness, and comparability have been met (see *Quality Objectives* section).
This section of the QAPP must also include the following information related to the analysis of the data:

- Summary of the methods that will be used to analyze and present the data
- Description of any statistical calculations and graphical representations that will be used
- Description of how the data will be presented (e.g., tables or charts) to illustrate trends, relationships, and anomalies, and how data below the lower reporting limit or detection limit will be handled.
- Description of how monitoring site and data will be evaluated to determine if the sampling design has been adequate
Preparing a Technical Evaluation Report (TER)

This section provides guidance on preparing the TER required as part of the TAPE certification process. The TER should support the stormwater treatment technology’s ability to obtain a GULD. If information included in the TER meets the requirements of the TAPE protocol, Ecology will grant a GULD for the technology, post the information on Ecology’s website, and add the technology to future stormwater management manuals. Proponents with a PULD or CULD are allowed a maximum of 30 months to prepare a QAPP, conduct stormwater monitoring according to the QAPP, and prepare a TER requesting CULD or GULD certification for their stormwater treatment technology. The TER must be produced as a standalone document; however, the QAPP should be included as an appendix to the TER.

The TER can be prepared by the vendor/manufacturer, an independent professional third party that developed the QAPP and conducted the monitoring program for the vendor/manufacturer, or another independent professional third party. If the vendor/manufacturer prepares the TER, a separate third-party review memorandum is required (described at the end of this manual).

Proponents may request that certain records or other information be considered confidential. Such requests will be considered by Ecology consistent with Washington State law (RCW 43.21A.160). In order for such records or information to be considered confidential, the proponent must certify that the records or information is unique to the design and construction of the technology, or release to the public or to a competitor would adversely affect the competitive position of the proponent. The proponent must request that such records or information be made available only for the confidential use of Ecology. All monitoring data including, but not limited to, laboratory results and field measurements, QA/QC data, data qualifiers, and monitoring site information cannot be considered confidential.

To make a request for confidentiality, the proponent must clearly mark only those pages that contain confidential material with the word “confidential” and submit these pages as a separate file from the TER to Ecology. Placeholder pages must be placed in the TER that state “confidential material has been provided as a separate document to Ecology.” The proponent must also provide a letter of explanation as to why these pages are confidential. Ecology will review the request and send notice to the proponent either granting or denying the confidentiality. Proponents may request return of material if Ecology denies the request for confidentiality. At a minimum, requests for confidentiality require a 1-month review.

A TER requires the following elements, which are described in the following sections:

- Cover letter
- Executive summary
- Introduction
- Technology description
- Sampling procedures
- Data summaries and analysis
- Operation and maintenance information
- Discussion
• Conclusions
• Appendices
• Third party review

Using the document structure outlined above will allow for an efficient review of the TER by Ecology and the BER. If the proponent chooses to monitor multiple sites, the results can be summarized in a single TER.

Cover letter
The cover letter accompanying the TER must include:
• A description of the current use level designation (i.e., PULD or CULD) and the performance goals (e.g., basic, dissolved metals, phosphorus, oil, or pretreatment)
• What use level designation, the proponent is requesting (i.e., CULD or GULD) and the performance goals (e.g., basic, dissolved metals, phosphorus, oil, or pretreatment). For example, “we are requesting a general use level designation for basic treatment…”
• A summary of the specific land use monitored and the removal performance of target pollutants. For example, “this stormwater treatment technology can remove 85% of total suspended solids from parking lots and residential streets…”
• The signature of a company representative

Executive summary
The executive summary should briefly describe each section of the TER and summarize key findings or results.

Introduction
The introduction of the TER should reiterate the information included in the cover letter. It should include a description of the current use level designation, the requested use level designation, and a summary of the removal performance of monitored parameters. Finally, the introduction should list the TER’s contents.

Technology description
The technology description in the TER should include the elements listed below. The description should ensure that the reader can understand completely how the product works after reading this section. Factors other than treatment performance should also be discussed in this section of the TER to assist the reader with evaluating other relevant factors along with the treatment system’s verified pollutant removal performance. Ecology and the BER may also take these factors into consideration when evaluating a stormwater treatment technology for a GULD. This section of the TER is intended to be a generic description of the technology, but should contain sufficient detail to allow the reader to fully understand how the technology works. This section is divided into the following components:
• Physical description
• Site requirements
• Sizing methodology
• Installation
• Operation and maintenance requirements
• Reliability
• Other benefits or challenges

Physical description
This section of the TER should include the following information:
• Description of physical, chemical, or biological treatment mechanisms (see Table 3)
• Design drawings and photographs
• Equipment dimensions
• Engineering plans/diagrams
• Description of each component’s hydraulic capacity

Site requirements
This section of the TER should describe the following site installation requirements, if applicable:
• Necessary soil characteristics.
• Hydraulic grade requirements.
• Depth to groundwater limitations.
• Utility requirements.
• Applications that the manufacturer recommends for the technology (e.g., land uses such as roadways, high-use sites, commercial, industrial, residential runoff areas) and the rationale for these recommendations.
• Pretreatment requirements
• List of the facilities that are installed in the United States. Include location, land use, and size of each facility. Provide at least three references with names and telephone numbers.

Proponents should also describe whether any of the following site characteristics or safety considerations favor or limit the technology’s use: climate, freezing weather/ice, rainfall pattern, steep slopes, high groundwater, seepage or base flows, tidal action, soil type, proximity to wells, septic systems and buildings, facility depth limits for access and safety, hazardous materials spill risk, driving head requirements, and power availability.

Sizing methodology
This section of the TER must describe design criteria and include sizing information for both eastern and western Washington. Relevant design criteria to be considered and sizing methodology for each portion of the state are briefly described below; however, the proponent must refer to the SWMMWW and the SWMMEW for additional information regarding facility sizing.
Design criteria
This section of the TER should describe the following design criteria, if applicable:

- Expected pollutant removal at the design flow and for representative stormwater characteristics
- Design hydraulics (e.g., design flow, bypass flow, hydraulic grade line, scour velocities)
- Design residence time, vertical and horizontal velocities
- Treatment limitations for specific stormwater constituents, including fouling factors
- Specific media flow rate (e.g., design velocity)
- Media head loss curves
- Minimum media contact time and minimum thickness
- Estimated design life of system components before major overhaul
- Media specifications ensuring adequate media quality at all times. A physical/chemical and impurity specifications list should be provided.

Western Washington
The treatment system must be sized to meet applicable performance goals at the design hydraulic loading rate coinciding with treating at least 91 percent of the total runoff volume, using an Ecology-approved continuous simulation model such as WWHM or MGS Flood. If the treatment system is located downstream of a detention facility, it must be sized to meet the full 2-year release rate of the detention facility.

Eastern Washington
The proponent should specify which of the following methods will be used to size their treatment systems preceding detention facilities or when detention facilities are not required:

- **Method 1 (Default Method):** The runoff flow rate predicted for the proposed development condition from the short-duration storm with a 6-month return frequency.
- **Method 2:** The runoff flow rate predicted for the proposed development condition from the Soil Conservation Service (SCS) Type II 24-hour storm with a 6-month return frequency,
- **Method 3:** The runoff flow rate for the proposed development condition calculated by the Rational Method using the 2-year Mean Recurrence Interval (see Chapter 4.7 of the SWMMEW). This method may be used only to design facilities based on instantaneous peak flow rates.

If the treatment system is located downstream of a detention facility, it must be sized to meet the full 2-year release rate of the detention facility.

Installation
This section of the TER should describe the following, if applicable:

- Technology installation requirements
- Provisions for factors such as structural integrity, water tightness, and buoyancy
- Types of problems that can occur or have occurred in designing and installing the technology
- Methods for diagnosing and correcting potential problems and person responsible to diagnose and correct problems
• Impacts to the technology’s effectiveness if problems are not corrected
• Technology availability (e.g., where do the major components come from and how much lead time is needed)

Operation and maintenance requirements
This section of the TER should include information on the following for a typical installation with typical stormwater, if applicable:
• How inspections are performed and their frequency
• How to forecast when maintenance will be needed (i.e., what is the "trigger" for determining maintenance needs) and rationale for these maintenance triggers
• How maintenance is performed
• Maintenance area accessibility by people and equipment (i.e., special equipment or methods needed for access, confined space entry areas)
• Estimated maintenance frequency and basis for how this frequency is determined
• Estimated media capacity for pollutant removal for filter systems
• An estimation of the design life of the facility or its individual components before needing replacement
• Maintenance equipment and materials required
• Maintenance service contract availability (e.g., cost information about mobilization, equipment rental, mileage, solids/spent media disposal)
• How solids and spent media are classified (waste type) and disposed
• Whether the technology can be damaged due to delayed maintenance, and if so, describe how it can be restored
• The number of years the manufacturer has been in business and how or where the facility owner will find needed parts, materials, and service if the vendor goes out of business or the product model changes

Reliability
This section of the TER should describe the following, if applicable:
• Assuming the technology is designed and installed correctly, list the factors that can cause it not to perform as designed
• Describe any circumstances where the technology can add, transform, or release accumulated pollutants
• Does the filter medium decompose or is it subject to slime/bacteria growth?
• Is the technology sensitive to heavy or fine sediment loadings—is pretreatment required?
• How is underperformance diagnosed and treated?
• What is the warranty?
• What initial or ongoing user support is provided? Does the vendor charge for support?

Other benefits or challenges
The proponent may also consider discussing whether the technology provides benefits or presents challenges in other potentially relevant areas, such as groundwater recharge, thermal
effects on surface waters, habitat creation, aesthetics, vectors, safety, community acceptance, recreational use, and efficacy on redevelopment sites. This section should also describe any copper, lead, or zinc components of the treatment system that may be exposed to stormwater runoff and could potentially leach into the effluent or any other constituent of concern that might contribute to increased pollutant concentrations in the effluent. Concrete components that may result in pH fluctuations in the effluent should also be described.

Sampling procedures

This section of the TER must describe any deviations from the sampling procedures that were identified in the QAPP and provide site-specific information. The approved QAPP and any subsequent addenda must be included as an appendix to the TER. Detailed information (e.g., dates, monitoring locations) related to deviations from the QAPP must also be provided to assist with the data evaluation in the Discussion section of the TER.

A vicinity map showing the site location, drainage area, impervious area, slopes, existing drainage system, and other important hydrologic information must be included in this section of the TER. A site schematic showing the treatment system and monitoring equipment locations must also be included. The treatment system basis of design must also be summarized and supported with design calculations, modeling assumptions, and modeling output reports.

Data summaries and analysis

The proponent must include a summary of the storm event data and an Individual Storm Report (ISR) for each sampled storm event summarizing storm, hydrologic, and pollutant data. ISRs must be produced for all sampled storm events, regardless of whether the storm even met all the required storm event criteria or not. Proponents must also provide analytical data, storm event data, technology description, and details on the test site to Ecology electronically in an Excel database. Appendix B provides a user’s guide outlining the information required in this database. Proponents should request a database template from the Ecology TAPE program. Unless instructed otherwise, upon approval of a GULD TAPE staff may submit data to the International Stormwater BMP Database. Proponents may opt to submit data to the database themselves.

Analytical data and storm event data must be provided for ALL storm events, whether they met the storm event and sample criteria or not. Proponents must note and provide justification for any samples that met the storm event and/or sample criteria but were not included in the data analysis, and for any samples that didn’t meet the storm event and/or sample criteria but were included in the data analysis.

The proponent must also present statistical comparisons of influent and effluent concentrations, pollutant removal efficiency calculations, a statistical evaluation of the compiled data relative to the desired performance goals, and an analysis of pollutant removal as a function of flow rate. Each requirement is described in more detail below. Alternative approaches to analyzing the data may be used; however, any deviation from the approaches described herein must be described in the QAPP and approved by Ecology in advance.
Storm event data
The TER must include a summary table with the following data from sampled storm events:

- Storm ID or number
- Location
- Storm depth
- Antecedent dry period
- Storm duration
- Influent, effluent, and bypass volume of water
- Peak and average flow rates through the treatment system
- Number of influent aliquots
- Number of effluent aliquots
- Percentage of influent and effluent storm volume sampled
- Comparisons of data to storm event guidelines (Table 5) and sample collection requirements (Tables 6 and 7)

Justification must be provided in the TER for storm event data that does not meet the storm event guidelines but will be included in the data analysis and for storm event data that does mean the storm event guidelines but will not be included in the data analysis.

Individual storm reports
Individual storm reports compare data and provide a detailed description of each storm event monitored in an easy to read format. A summary table of the water quality results from each storm event is required in the main text of the TER. Analytical data from all sampled events must be included in the summary table, regardless of whether they met the storm or sample event criteria. ISRs must be included as an appendix to the TER. Individual storm reports must include the following general, storm, hydrologic, and pollutant information:

General information

- Monitoring site name
- Site location (UTM or latitude/longitude)
- Drainage area

Storm information

- Storm name or number
- Storm event date
- Antecedent dry period conditions
- Total precipitation depth (inches)
- Precipitation duration (hours)
- Mean precipitation intensity (inches per hour)
- Maximum precipitation intensity (inches per hour)
Hydrologic information
- Influent peak flow rate (gpm or cfs)
- Effluent peak flow rate (gpm or cfs)
- Average influent flow rate (gpm or cfs)
- Average effluent flow rate (gpm or cfs)
- Bypass peak flow rate (gpm or cfs)
- Total influent runoff volume (gallons or cubic feet [cf])
- Total effluent runoff volume (gallons or cf)
- Total bypass runoff volume (gallons or cf)
- Event hydrograph with time on x-axis, flow and precipitation on y-axes) that includes precipitation, influent flow, effluent flow, influent aliquots, and effluent aliquots
- Data flags for identified QA issues

Pollutant information
- Number of influent aliquots
- Number of effluent aliquots
- Percent of storm sampled
- Parameters monitored
- Influent EMCs
- Effluent EMCs
- Removal efficiency
- Laboratory detection limits
- Data flags for identified QA issues

Statistical comparisons of influent and effluent pollutant concentrations
The proponent must conduct statistical analyses to determine whether there are significant differences in pollutant concentrations between the influent and effluent stations across individual storm events. The specific null hypothesis (H₀) and alternative hypothesis (Hₐ) for these analyses are as follows:

H₀: Effluent pollutant concentrations are equal to or greater than influent concentrations.
Hₐ: Effluent concentrations are less than influent concentrations.

To evaluate these hypotheses, a 1-tailed Wilcoxon signed-rank test (Helsel and Hirsch 2002) should be used to compare the influent and effluent performance data. (The Wilcoxon signed-rank test is a nonparametric analogue to the paired t-test.) Statistical significance should be assessed based on an alpha (α) level of 0.05.

Pollutant removal efficiency calculations
The proponent must calculate removal efficiencies for each measured pollutant using one of the two methods presented below. Note that these methods are only appropriate for short detention
time systems having influent and effluent samples that can be realistically paired. The calculated pollutant removal efficiency estimates should be presented with the applicable performance goal in a table or graph. Samples with influent concentrations that are greater than the range specified in Table 2 may be included by artificially setting the value at the upper end of the concentration range prior to completing the pollutant removal efficiency calculations. If the proponent opts to include samples with concentrations that are greater than the influent concentration range, they must include all valid samples that are greater than the range (i.e. proponents cannot “cherry pick” data). If the effluent concentration is below the method detection limit, the detection limit shall be used to perform the calculation.

Method #1: Individual storm reduction in pollutant concentration

The reduction in pollutant concentration during each individual storm is calculated as:

\[
\frac{100(A - B)}{A}
\]

where:

A = flow-proportional influent concentration
B = flow-proportional effluent concentration

This method is typically applied when there are no water losses in the treatment system between the inlet and outlet (i.e., influent flow volume equals effluent flow volume).

Method #2: Individual storm reduction in pollutant loading

The reduction in pollutant loading during each individual storm is calculated as:

\[
\frac{100(A - B)}{A}
\]

where:

A = (Storm 1 influent concentration) x (Storm 1 influent volume)
B = (Storm 1 effluent concentration) x (Storm 1 effluent volume)

This method is typically applied when there are potential water losses (e.g., from infiltration or evaporation) in the system being tested between the inlet and outlet.

Statistical evaluation of performance goals

The proponent must conduct statistical analyses to determine whether the collected data demonstrate that the treatment system met applicable performance goal(s) specified in Table 2.

To evaluate the performance goals for basic, dissolved metals, phosphorus, and oil treatment, the proponent must use bootstrapping to compute confidence intervals around the mean effluent concentration or pollutant removal efficiency. Bootstrapping offers a distribution-free method for computing confidence intervals around a measure of central tendency (Efron and Tibshirani 1993). The generality of bootstrapped confidence intervals means they are well-suited to non-normally distributed data or datasets not numerous enough for a powerful test of normality (Porter et al. 1997).
In its simplest form, bootstrapping a summary statistic of a dataset of sample size \(n \), consists of drawing \(n \) elements from the dataset randomly with replacement and equal probabilities of drawing any element. The statistic of interest is then calculated on this synthetic dataset, and the process is repeated for many repetitions. Repetition generates a distribution of possible values for the statistic of interest. Percentiles of this distribution are confidence intervals of the statistic. For example, if the mean is calculated for 1,000 synthetic datasets, after sorting the replications, the result at rank 50 is the one-sided lower 95 percent confidence limit for the mean, and the result at rank 950 is the one-sided upper 95 percent confidence limit for the mean.

For basic, dissolved metals, and phosphorus treatment with goals that are expressed as a minimum removal efficiency (i.e., 80 percent TSS removal, 30 percent dissolved copper removal, 60 percent dissolved zinc removal, and 50 percent TP removal), bootstrapping should be used to compute the 95 percent confidence interval around the mean removal efficiency for the treatment system being evaluated. (Individual removal efficiency values should be computed using either Method #1 or Method #2 as described above.) The lower one-sided 95 percent confidence limit should then be compared to the applicable performance goal. If this limit is higher than the treatment goal, it can be concluded that the system met the performance goal with the required 95 percent confidence.

For basic and oil treatment with goals that are expressed as a maximum effluent concentration (e.g., 20 mg/L TSS and 10 mg/L TPH), bootstrapping should be used to compute the 95 percent confidence interval around the mean effluent concentration for the treatment system being evaluated through the TAPE process. The upper one-sided 95 percent confident limit as computed above should then be compared to the applicable performance goal. If the upper one-sided confidence limit is lower than the treatment goal, it can be concluded that the system met the performance goal with the required 95 percent confidence.

Pollutant removal as a function of flow rate

The proponent must conduct a regression analysis to evaluate pollutant removal performance (either percent removal or effluent concentration, whichever is applicable and required) as a function of flow rate. The goal of this analysis is to determine if the applicable performance goal for a given parameter is being met at the design hydraulic loading rate for the treatment system. Ecology will generally not approve a treatment system for a design hydraulic loading rate that is higher than the highest flow rate in the monitored data (field or lab). To perform this analysis, the proponent should determine the 90th percentile influent flow rate for each flow-proportional composite sample and an instantaneous influent flow rate for each grab sample. Next, the proponent should perform a regression analysis to determine whether the treatment performance increases, decreases, or remains unchanged as function of influent flow rate. More detailed information on these steps is provided in the following subsections.

Influent flow rate determination

For flow-proportional composite sampling, the proponent should calculate the 90th percentile influent flow rate for each sample. Specifically, the influent flow rates measured across each flow-proportional composite sample should be tabulated and the 90th percentile value computed from the entire range. This process should be completed for all flow-proportional composite samples. For grab sampling, the proponent should determine the flow rate at the time each
sample was collected based on comparisons of sample collection times to the continuous measurements from the influent monitoring station.

Regression analysis
The proponent should develop linear regression models using the influent flow rates described in the previous subsection as the independent variable and pollutant removal performance data (from the composite samples or grab samples) as the dependent variable. The suitability of the regression equation should be evaluated using the following diagnostics (described in more detail in Helsel and Hirsch [2002]):

- **Data coverage** – to develop a usable linear regression model, an adequate number of data must have been collected across the influent flow range of interest (i.e., peak flows at 50 to 125 percent of the design hydraulic loading rate or velocity).
- **Outliers** – extreme outliers should be evaluated and removed if they impart undue influence on the regression relationship.
- **Linearity** – scatter plots should be used to determine if a linear regression model provides a good fit to the data; as necessary, data transformations should be performed to improve the linear fit.
- **Constant variance** – to obtain a valid linear regression model, the variance of the dependent variable should remain relatively constant across the range of values for the independent variable; as necessary, data transformations should be performed to remove or reduce this problem.
- **Other explanatory variables** – other explanatory variables correlated with the independent variable can influence the dependent variable. For example, influent concentrations of “source limited” parameters can decrease as the influent flow rate increases; this can lead to an overall decrease in system performance. To evaluate this and other potential confounding factors, residuals from the linear regression model should be plotted against other likely explanatory variables. Advanced methods for performing linear regression analyses with multiple explanatory variables are described in Helsel and Hirsch (2002).

After performing these diagnostics to obtain the best linear regression model for the data, the p-value of the associated regression line should be evaluated to determine the statistical significance of the associated slope coefficient. If the p-value is greater than 0.05, the slope coefficient can be deemed insignificant (i.e., not significantly different from zero). In these instances it can be assumed that there is no relationship between flow and pollutant removal performance over the range of flow rates measured. If the p-value is less than or equal to 0.05, the slope coefficient can be deemed significant. In these instances, the linear regression model can be used to estimate mean system performance at the design hydraulic loading rate.

Operation and maintenance information
This section of the TER must include the following, if applicable:

- Any data available about operation and maintenance performed on the stormwater treatment technology being tested.
- An evaluation of pollutant removal and bypass frequency over time (using a graphical representation that highlights the time periods when maintenance was performed). If the treatment system is configured with a bypass, the treated flow rate during bypass conditions
should be plotted against time and compared to the system design hydraulic loading rate. The TER should describe how this information will be used to verify maintenance cycles.

- An evaluation of the average bypass frequency to determine if the treatment system was appropriately sized (i.e., treats 91 percent of the average runoff volume).
- The results of the required screening parameter testing (Table 8).
- Measurements of the sediment load that caused the technology to fail (if applicable) to help demonstrate facility performance and design an operation and maintenance plan.
- Measurements of the accumulated sediment depth to help demonstrate facility performance and design an operation and maintenance plan.
- The chemistry results of the accumulated sediment sampling (if conducted) to determine the types of pollutants that were trapped in the settled sediment based on the performance goal(s) that the proponent is trying to achieve (Table 2).
- Specific disposal requirements based on the pollutant concentrations measured (if sediment chemistry analysis was performed). Since no specific regulations currently exist for disposal of sediment from catch basins, street sweeping, and stormwater treatment facilities, the Model Toxics Control Act (MTCA) Cleanup Regulations (Chapter 173-340 WAC) is often used to determine the disposal requirements for these types of sediment. Proponents can also refer to Appendix IV-G in the SWMMWW or Appendix 8B in the SWMMEW for a discussion of sediment disposal and recommended disposal thresholds.

Discussion

This section of the TER must include at a minimum:

- A statistical data evaluation
- An explanation of any deviations from sampling procedures
- Information about anticipated performance in relation to climate, design storm, or site conditions
- Information on recommended operation and maintenance schedules
- Identification of any special disposal requirements
- An explanation of poor performance (if observed)

Conclusions

This section of the TER must provide conclusions based on the findings of the monitoring program, and should summarize the pollutant removal performance of the monitored parameters. Conclusions and recommendations should also include recommended operation and maintenance procedures and frequency, pretreatment requirements (if applicable), use limitations, sizing criteria (flow or volume), recommended information to be posted on Ecology’s website, and additional testing recommendations (if needed). Ecology will utilize information from this section to prepare the use level designation letter.
Appendices

Appendices to the TER must include:

- The approved QAPP and any subsequent QAPP addendums
- All raw data (e.g., laboratory reports, chain of custody forms)
- Any available non-standard data (data not collected per TAPE, out-of-state testing not conducted at an Ecology Approved Stormwater Testing Facility, or field performance testing with real storms not meeting protocol guidelines)
- Supplemental laboratory testing results
- ISRs
- Completed standardized field forms for each sampled storm event
- Maintenance records for the treatment system
- Operation and maintenance plan (if available)
- Data analysis documentation

Third-party review

For all submittals that contain field monitoring data that was collected by a vendor or manufacturer of a stormwater treatment technology, an independent professional third party must prepare a third-party review memorandum that contains the following elements:

- A signature page verifying that the opinions contained in the review memorandum are that of an independent third-party reviewer and no conflict of interest is present.
- A data validation review verifying that the site setup was performed according to the QAPP, and that monitoring was conducted in accordance with this protocol and the QAPP.
- A data summary that includes a review of monitoring data and ISRs from all sampled storm events, a test results summary, conclusions, and a comparison with the vendor or manufacturer’s performance claims.
- A recommendation of the appropriate use level designation for the treatment system.
- Additional testing recommendations, if needed.

If the field monitoring was conducted by an independent professional third party, and the TER was also prepared by the same or a different independent professional third party, then a third-party review memorandum is not required.
References

Appendix A: Glossary

Accreditation – A certification process for laboratories, designed to evaluate and document a lab’s ability to perform analytical methods and produce acceptable data.

Accuracy – the degree to which a measured value agrees with the true value of the measured property. The terms precision and bias are often used to convey the information associated with this term.

Absorption – The penetration of a substance into or through another, such as the dissolving of a soluble gas in a liquid.

Adsorption – The adhesion of a substance to the surface of a solid or liquid; often used to extract pollutants by causing them to be attached to such adsorbents as activated carbon or silica gel. Heavy metals such as zinc and lead often adsorb onto sediment particles.

Analyte – An element, ion, compound, or chemical moiety (pH, alkalinity) which is to be determined.

Anion exchange – The chemical process where negative ions of one chemical are preferentially replaced by negative ions of another chemical.

Automated sampler – A portable unit that can be programmed to collect discrete sequential samples, time-composite samples, or flow-composite samples.

Backwater – Water upstream from an obstruction which is deeper than it would normally be without the obstruction.

Basic treatment – Treatment of stormwater with the goal of removing at least 80 percent of the solids present in the runoff. Receiving waters and areas subject to this treatment requirement are specified in the SWMMWW and SWMMEW. Additional treatment to remove metals, oil or phosphorus may be required at some sites or for some receiving water bodies.

Best management practice (BMP) – The schedules of activities, prohibitions of practices, maintenance procedures, and structural and/or managerial practices, that when used singly or in combination, prevent or reduce the release of pollutants and other adverse impacts to waters of Washington State.

Bias – The difference between the population mean and the true value. Bias usually describes a systematic difference reproducible over time, and is characteristic of both the measurement system, and the analyte(s) being measured.

Blank – A synthetic sample, free of the analyte(s) of interest. For example, in water analysis, pure water is used for the blank. In chemical analysis, a blank is used to estimate the analytical response to all factors other than the analyte in the sample. In general, blanks are used to assess
possible contamination or inadvertent introduction of analyte during various stages of the sampling and analytical process.

Bypass – A design feature that allows flow rates or flow volumes higher than the design hydraulic loading rate to be routed past the stormwater treatment technology without receiving treatment.

Calibration – The process of establishing the relationship between the response of a measurement system and the concentration of the parameter being measured.

Cation exchange – A process where positively charged ions of one chemical are preferentially replaced by positive ions of another chemical.

Comparability – The degree to which different methods, datasets and/or decisions agree or can be represented as similar.

Completeness – The amount of valid data obtained from a data collection project compared to the planned amount. Completeness is usually expressed as a percentage.

Composite sample – Used to determine “average” loadings or concentrations of pollutants, such samples are collected at specified intervals, and pooled into one large sample, can be developed on time, flow volume, or flow rate.

Conditional use level designation (CULD) – A use level designation assigned by Ecology for emerging technologies that have a considerable amount of performance data that were not collected using the TAPE protocol. Ecology will limit the number of installations to ten development and redevelopment projects for this use level designation; however, there is no installation limit for retrofit projects. Field monitoring is only required to be conducted at one installed system with this use level designation.

Confined space entry – A space that is large enough and so configured that an employee can bodily enter and perform assigned work, has limited or restricted means for entry or exit (for example, tanks, vessels, silos, storage bins, hoppers, vaults, and pits are spaces that may have limited means of entry) and is not designed for continuous employee occupancy.

Control chart – A graphical representation of quality control results demonstrating the performance of an aspect of a measurement system.

Control limits – Statistical warning and action limits calculated based on control charts. Warning limits are generally set at ± 2 standard deviations from the mean, action limits at ± 3 standard deviations from the mean.

Dataset – A grouping of samples, usually organized by date, time, and/or analyte.
Data validation – An analyte-specific and sample-specific process that extends the evaluation of data beyond data verification to determine the analytical quality of a specific dataset. It involves a detailed examination of the data package using professional judgment to determine whether the MQOs for precision, bias, and sensitivity have been met.

Data verification – Examination of the data for errors or omissions and of the quality control results for compliance with acceptance criteria.

Design storm – A prescribed hyetograph and total precipitation amount (for a specific duration recurrence frequency) used to estimate runoff for a hypothetical storm of interest or concern for the purposes of analyzing existing drainage, designing new drainage facilities or assessing other impacts of a proposed project on the flow of surface water. (A hyetograph is a graph of percentages of total precipitation for a series of time steps representing the total time during which the precipitation occurs.)

Detention – The release of stormwater runoff from the site at a slower rate than it is collected by the stormwater facility system, the difference being held in temporary storage.

Detention time – The theoretical time required to displace the contents of a stormwater treatment facility at a given rate of discharge (volume divided by rate of discharge).

Discrete sample – An individual sample collected at a specific time and flow rate.

Dissolved metals treatment – Treatment of stormwater with the goal of removing dissolved metals (e.g., copper and zinc) present in the runoff. Receiving waters and areas subject to this treatment requirement are specified in the SWMMWW and SWMMEW. Additional treatment to remove oil or phosphorus may be required at some sites or for some receiving water bodies.

Drainage area – The area contributing runoff to a single point measured in a horizontal plane, which is enclosed by a ridge line.

Drainage – Refers to the collection, conveyance, containment, and/or discharge of surface and stormwater runoff.

Effluent – Discharge from the outlet that is not comingled with stormwater bypassing the stormwater treatment technology.

Emerging technology – Treatment technologies that have not been evaluated with approved protocols, but for which preliminary data indicate that they may provide a necessary function(s) in a stormwater treatment system. Emerging technologies need additional evaluation to define design criteria to achieve, or to contribute to achieving, state performance goals, and to define the limits of their use.

Erosion – The wearing away of the land surface by running water, wind, ice, or other geological agents, including such processes as gravitational creep. This term also includes detachment and movement of soil or rock fragments by water, wind, ice, or gravity.
Equipment rinsate blank – A quality control sample collected by passing reagent-grade water through clean equipment and collecting samples for chemical analyses. The amount of reagent-grade water used for the sample should represent the volume of stormwater that will be collected during a typical sampling event. The equipment rinsate blank may also detect contamination from the surroundings, contamination from the containers, or from cross-contamination during transportation and storage of the samples and is therefore the most comprehensive type of field blank.

Event Mean Concentration (EMC) – Pollutant concentration of a composite of multiple samples (aliquots) collected during the course of a storm. The EMC accurately depicts pollutant levels from a site and is most representative of average pollutant concentrations over an entire runoff event.

Field blank – A blank used to obtain information on contamination introduced during sample collection, storage, and transport. Includes transport blanks, transfer blanks, equipment rinsate blanks, and filter blanks.

Field duplicates – Separate samples collected simultaneously at the identical source location and analyzed separately. Field duplicates are used to assess total sample variability (i.e., field plus analytical variability).

Filter blank – A special case of a rinsate blank prepared by filtering pure water through the filtration apparatus after routine cleaning that may detect contamination from the filter or other part of the filtration apparatus.

Filtration – Use of various media such as sand, perlite, zeolite, and carbon, to remove low levels of total suspended solids (TSS). Specific media such as activated carbon or zeolite can remove hydrocarbons and soluble metals. Filter systems can be configured as basins, trenches, or cartridges.

Frequency of storm (design storm frequency) – The anticipated period in years that will elapse, based on average probability of storms in the design region, before a storm of a given intensity and/or total volume will recur; thus a 10-year storm can be expected to occur on the average once every 10 years.

Gauge – Device for registering precipitation, water level, discharge, velocity, pressure, temperature, etc.

General use level designation (GULD) – A use level designation assigned by Ecology for emerging technologies that have achieved the monitoring and reporting requirements specified in the TAPE protocol. This use level designation confers a general acceptance for the treatment technology. Technologies with this use level designation may be installed anywhere in Washington, subject to Ecology’s conditions.

Grab sample – A sample collected during a very short time period at a single location.
Groundwater – Water in a saturated zone or stratum beneath the land surface or a surface waterbody.

Head (hydraulics) – The height of water above any plane of reference. The energy, either kinetic or potential, possessed by each unit weight of a liquid, expressed as the vertical height through which a unit weight would have to fall to release the average energy possessed. Used in various compound terms such as pressure head, velocity head, and head loss.

Head loss – Energy loss due to friction, eddies, changes in velocity, or direction of flow.

Hydraulic gradient – Slope of the potential head relative to a fixed datum.

Hydrograph – A graph of runoff rate, inflow rate or discharge rate past a specific point as a function of time.

Illicit connection – Any man-made conveyance that is connected to a municipal separate storm sewer without a permit, excluding roof drains and other similar type connections. Examples include sanitary sewer connections, floor drains, channels, pipelines, conduits, inlets, or outlets that are connected directly to the municipal separate storm sewer system.

Impervious surface – A hard surface area which either prevents or retards the entry of water into the soil mantle as under natural conditions prior to development. A hard surface area which causes water to run off the surface in greater quantities or at an increased rate of flow from the flow present under natural conditions prior to development. Common impervious surfaces include, but are not limited to, roof tops, walkways, patios, driveways, parking lots or storage areas, concrete or asphalt paving, gravel roads, packed earthen materials, and oiled, macadam or other surfaces which similarly impede the natural infiltration of stormwater. Open, uncovered retention/detention facilities shall be considered impervious surfaces for purposes of runoff modeling.

Infiltration – The downward movement of water from the surface to the subsoil.

Influent – Stormwater runoff entering the inlet of the stormwater treatment technology.

Inlet – A form of connection between surface of the ground and the stormwater treatment technology for the admission of surface and stormwater runoff.

Laboratory control sample (LCS) – A sample of known composition prepared using contaminant-free water or an inert solid that is spiked with analytes of interest at the midpoint of the calibration curve or at the level of concern. It is prepared and analyzed in the same batch of regular samples using the same sample preparation method, reagents, and analytical methods employed for regular samples.

Laboratory replicates – Repeated analyses of a variable performed on the contents of a single sample bottle. Laboratory replicates are used to assess analytical precision. Duplicate analyses are sufficient for procedures that are well proven in the laboratory.
Lag time – The detention time for a stormwater treatment technology that occurs between the inlet and outlet.

Maintenance – Repair and maintenance includes activities conducted on currently serviceable structures, facilities, and equipment that involves no expansion or use beyond that previously existing and resulting in no significant adverse hydrologic impact. It includes those usual activities taken to prevent a decline, lapse, or cessation in the use of structures and systems and includes replacement of disfunctioning facilities, including cases where environmental permits require replacing an existing structure with a different type structure, as long as the functioning characteristics of the original structure are not changed.

Matrix spike (MS) and matrix spike duplicate (MSD) – A QC sample prepared by adding a known amount of the target analyte(s) to an aliquot of a sample to check for bias due to interference or matrix effects.

Measurement quality objectives (MQOs) – Performance or acceptance criteria for individual data quality indicators, usually including precision, bias, sensitivity, completeness, comparability, and representativeness.

Metals – Elements, such as cadmium, chromium, cobalt, copper, lead mercury, nickel, and zinc, which are of environmental concern because they do not degrade over time. Although many are necessary nutrients, they are sometimes magnified in the food chain, and they can be toxic to life in high enough concentrations. They are also referred to as heavy metals.

Method – A formalized group of procedures and techniques for performing an activity (e.g., sampling, chemical analysis, data analysis), systematically presented in the order in which they are to be executed.

Method blank – A blank prepared to represent the sample matrix, prepared and analyzed with a batch of samples. A method blank will contain all reagents used in the preparation of a sample, and the same preparation process is used for the method blank and samples.

Monitoring – The collection of data by various methods for the purposes of understanding natural systems and features, evaluating the impacts of development proposals on such systems, and assessing the performance of mitigation measures imposed as conditions of development.

National Pollutant Discharge Elimination System (NPDES) – The part of the federal Clean Water Act, which requires point source dischargers to obtain permits. These permits are referred to as NPDES permits and, in Washington State, are administered by the Washington State Department of Ecology.

New development – Land disturbing activities, including Class IV-general forest practices that are conversions from timber land to other uses; structural development, including construction or installation of a building or other structure; creation of impervious surfaces; and subdivision, short subdivision and binding site plans, as defined and applied in Chapter 58.17 RCW. Projects meeting the definition of redevelopment shall not be considered new development.
Nutrients – Essential chemicals needed by plants or animals for growth. Excessive amounts of nutrients can lead to degradation of water quality and algal blooms. Some nutrients can be toxic at high concentrations.

NWTPH-Dx (Northwest total petroleum hydrocarbon – motor oil and diesel fractions) – Qualitative and quantitative method (extended) for semi-volatile (“diesel”) petroleum products in soil and water. Petroleum products applicable for this include jet fuels, kerosene, diesel oils, hydraulic fluids, mineral oils, lubricating oils and fuel oils.

NWTPH-Gx (Northwest total petroleum hydrocarbon – gasoline fraction) – Qualitative and quantitative method (extended) for volatile (“gasoline”) petroleum products in soil and water. Petroleum products applicable for this method include aviation and automotive gasolines, mineral spirits, Stoddard solvent and naphtha.

Off-line facilities – Water quality treatment facilities to which stormwater runoff is restricted to some maximum flow rate or volume by a flow-splitter.

Oil treatment – Treatment of stormwater with the goal of removing oil present in the runoff. Receiving waters and areas subject to this treatment requirement are specified in the SWMMWW and SWMMEW. This type of treatment is required for high-use sites and high average daily traffic (ADT) areas. Additional treatment to remove metals or phosphorus may be required at some sites or for some receiving water bodies.

On-line facilities – Water quality treatment facilities which receive all of the stormwater runoff from a drainage area. Flows above the water quality design hydraulic loading rate or volume are passed through at a lower percent removal efficiency.

Outlet – Point of water disposal from a stormwater treatment technology.

Parameter – A specified characteristic of a population or sample. Also, an analyte or grouping of analytes. Total suspended solids, total phosphorus, and total petroleum hydrocarbons are all “parameters”.

Particle size – The effective diameter of a particle as measured by sedimentation, sieving, or micrometric methods.

Percent relative standard deviation (%RSD) – A statistic used to evaluate precision in environmental analysis. It is determined in the following manner:

\[
\%\text{RSD} = \frac{100 \times s}{x}
\]

where s = sample standard deviation, and x = sample mean

Pervious surface – A surface that allows infiltration of stormwater into the underlying soil. Common pervious surfaces include, but are not limited to, lawns, pastures, and forests.

pH – A measure of the alkalinity or acidity of a substance which is conducted by measuring the concentration of hydrogen ions in the substance.
Phosphorus treatment – Treatment of stormwater with the goal of removing 50 percent of the total phosphorus present in the runoff. Receiving waters and areas subject to this treatment requirement are specified in the SWMMWW and SWMMEW. This type of treatment is required only where federal, state, or local government has determined that a water body is sensitive to phosphorus and that a reduction in phosphorus from new development and redevelopment is necessary to achieve water quality standards. Additional treatment to remove metals or oil may be required at some sites or for some receiving water bodies.

Pilot use level designation (PULD) – A use level designation assigned by Ecology for emerging technologies with limited performance data or laboratory testing data. Ecology will limit the number of installations to five new development and redevelopment projects for this use level designation; however, there is no installation limit for retrofit projects. Field monitoring must be conducted at all installed systems with this use level designation.

Pollutant – A contaminant in a concentration or amount that adversely alters the physical, chemical, or biological properties of the natural environment. Dredged soil, solid waste, incinerator residue, filter backwash, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials (except those regulated under the Atomic Energy Act of 1954, as amended), heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal, and agricultural waste discharged into water.

Pollutant load – A mass concentration multiplied by the total volume of water passing by a certain point in time.

Precision – The extent of random variability among replicate measurements of the same property.

Pretreatment – The removal of material such as solids, grit, grease, and scum from flows prior to physical, biological, or physical treatment processes to improve treatability. Pretreatment may include screening, grit removal, settling, oil/water separation, or application of a Basic Treatment BMP prior to infiltration.

Proponent – The person(s) who would like to certify their stormwater treatment technology through the TAPE process. This can include the designer, manufacturer, vendor, and their consultant(s).

Quality assurance (QA) – A set of activities designed to establish and document the reliability and usability of measurement data.

Quality Assurance Project Plan (QAPP) – A document that describes the objectives of a project, and the processes and activities necessary to develop data that will support those objectives.

Quality control (QC) – The routine application of measurement and statistical procedures to assess the accuracy of measurement data.
Redevelopment – On a site that is already substantially developed (i.e., has 35 percent or more of existing impervious surface coverage), the creation or addition of impervious surfaces; the expansion of a building footprint or addition or replacement of a structure; structural development including construction, installation or expansion of a building or other structure; replacement of impervious surface that is not part of a routine maintenance activity; and land disturbing activities.

Retrofitting – The renovation of an existing structure or facility to meet changed conditions and/or to improve performance.

Relative percent difference (RPD) – The difference between two values divided by their mean and multiplied by 100.

Reporting limit – The lowest amount of an analyte in a sample that can be quantitatively determined with stated, acceptable precision and accuracy under stated analytical conditions (i.e., the lower limit of quantitation).

Representativeness – The degree to which a sample reflects the population from which it is taken.

Return frequency – A statistical term for the average time of expected interval that an event of some kind will equal or exceed given conditions (e.g., a stormwater flow that occurs every 2 years).

Runoff – Water originating from rainfall and other precipitation that is found in drainage facilities, rivers, streams, springs, seeps, ponds, lakes and wetlands as well as shallow ground water. It also means the portion of rainfall or other precipitation that becomes surface flow and interflow.

Sensitivity – In general, denotes the rate at which the analytical response (e.g., absorbance, volume, meter reading) varies with the concentration of the parameter being determined. In a specialized sense, it has the same meaning as the detection limit.

Settleable solids – Those suspended solids in stormwater that separate by settling when the stormwater is held in a quiescent condition for a specified time.

Settling – The process by which particulates settle to the bottom of a liquid and form a sediment.

Slope – Degree of deviation of a surface from the horizontal; measured as a numerical ratio, percent, or in degrees. Expressed as a ratio, the first number is the horizontal distance (run) and the second is the vertical distance (rise), as 2:1.

Standard operating procedure (SOP) – A document which describes in detail a reproducible and repeatable organized activity.

Steep slope – Slopes of 40 percent gradient or steeper within a vertical elevation change of at least ten feet. A slope is delineated by establishing its toe and top, and is measured by averaging the inclination over at least ten feet of vertical relief.

Stormwater – That portion of precipitation that does not naturally percolate into the ground or evaporate, but flows via overland flow, interflow, pipes and other features of a stormwater drainage system into a defined surface waterbody, or a constructed infiltration facility.

Stormwater facility – A constructed component of a stormwater drainage system, designed or constructed to perform a particular function, or multiple functions. Stormwater facilities include, but are not limited to, pipes, swales, ditches, culverts, street gutters, detention ponds, retention ponds, constructed wetlands, infiltration devices, catch basins, oil/water separators, and biofiltration swales.

Stormwater Management Manual for Eastern Washington (SWMMEW) – A manual, prepared by Ecology, that contains BMPs to prevent, control, or treat pollution in stormwater, and reduce other stormwater-related impacts to waters of the state. The manual is intended to provide guidance on measures necessary in eastern Washington to control the quantity and quality of stormwater runoff from new development and redevelopment.

Stormwater Management Manual for Western Washington (SWMMWW) – A manual, prepared by Ecology, that contains BMPs to prevent, control or treat pollution in stormwater and reduce other stormwater-related impacts to waters of the State. The manual is intended to provide guidance on measures necessary in western Washington to control the quantity and quality of stormwater runoff from new development and redevelopment.

Surrogate – For environmental chemistry, a surrogate is a substance with properties similar to those of the target analyte(s). Surrogates are unlikely to be native to environmental samples. They are added to environmental samples for quality control purposes, to track extraction efficiency and/or measure analyte recovery. Deuterated organic compounds are examples of surrogates commonly used in organic compound analysis.

Total petroleum hydrocarbons (TPH) – TPH-Gx: The qualitative and quantitative method (extended) for volatile (“gasoline”) petroleum products in water; and TPH-Dx: The qualitative and quantitative method (extended) for semi-volatile (“diesel”) petroleum products in water.

Total suspended solids (TSS) – That portion of the solids (organic or inorganic particles including sand, mud, and clay particles and associated pollutants) carried by stormwater that can be captured on a standard glass filter.

Transfer blank – A sample container of pure water, which is prepared at the laboratory and carried unopened to the field and back with the other sample containers to check for possible
contamination in the containers or for cross-contamination during transportation and storage of the samples.

Transport blank – A sample container of pure water which is filled during routine sample collection to check for possible contamination from the surroundings, contamination from the containers, or from cross-contamination during transportation and storage of the samples.

Treatment BMP – A BMP that is intended to remove pollutants from stormwater. A few examples of treatment BMPs are wet ponds, oil/water separators, biofiltration swales, and constructed wetlands.

Treatment train – A combination of two or more treatment facilities connected in series.

Vortexing separation – Physical stormwater treatment technology that employs the use of cylindrical chambers to induce rotational forces that separate settleable solids and associated pollutants.

Water quality – A term used to describe the chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular purpose.

Water quality design storm – The 24-hour rainfall amount with a 6-month return frequency. Commonly referred to as the 6-month, 24-hour storm.
This page intentionally left blank
Appendix B: User’s Guide for Data Entry

Technology Assessment Protocol – Ecology (TAPE)

Test Site

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Name of the site as determined by project technology evaluation team.</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>Closest city to the test site.</td>
</tr>
<tr>
<td>State</td>
<td>State where technology evaluation was performed</td>
</tr>
<tr>
<td>Zip Code</td>
<td>Zip code where technology evaluation was performed</td>
</tr>
<tr>
<td>Elevation</td>
<td>Elevation of mean sea level provided to the nearest 100 ft.</td>
</tr>
<tr>
<td>Site Latitude</td>
<td>Latitude reported in decimal degree format.</td>
</tr>
<tr>
<td>Site Longitude</td>
<td>Longitude reported in decimal degree format.</td>
</tr>
<tr>
<td>Drainage Basin Area</td>
<td>Size, in acres, of the basin draining to the test unit.</td>
</tr>
<tr>
<td>% impervious</td>
<td>Percent of impervious land within the drainage basin.</td>
</tr>
<tr>
<td>Primary Land Use</td>
<td>Primary land use within the drainage basin.</td>
</tr>
<tr>
<td>Secondary Land Use</td>
<td>Secondary land use within the drainage basin (if applicable).</td>
</tr>
<tr>
<td>Water Quality Design Flow</td>
<td>Drainage basin flow rate as determined by the Western Washington Hydrology Model or other Ecology approved continuous runoff model.</td>
</tr>
<tr>
<td>Watershed Number</td>
<td>Watershed number based on 8-Digit Hydrologic Unit Code (HUC). https://water.usgs.gov/wsc/map_index.html</td>
</tr>
<tr>
<td>Watershed Name</td>
<td>Watershed name based on 8-Digit Hydrologic Unit Code (HUC) https://water.usgs.gov/wsc/map_index.html</td>
</tr>
<tr>
<td>Total Watershed Area</td>
<td>Size of watershed, in acres, as defined by 8-Digit Hydrologic Unit Code (HUC). https://water.usgs.gov/wsc/map_index.html</td>
</tr>
<tr>
<td>Additional site information</td>
<td>Any additional information that may be relevant to the study. Additional land use types, vegetation present, nearest waterbody, etc.</td>
</tr>
</tbody>
</table>

Technology Info

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Test unit manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Name</td>
<td>Test unit name</td>
</tr>
<tr>
<td>Model</td>
<td>Test unit model</td>
</tr>
<tr>
<td>Hydraulic Loading Rate</td>
<td>The flow rate designed to pass through the test unit to meet the TAPE treatment goals.</td>
</tr>
<tr>
<td>Units for loading rate</td>
<td>Units for the hydraulic loading rate (in/hr, gpm/ft², etc.).</td>
</tr>
<tr>
<td>Treatment Level</td>
<td>TAPE Treatment level being pursued or granted for the test unit (Basic, Enhanced, Phosphorus, Oil, Pretreatment)</td>
</tr>
<tr>
<td>Date unit placed in service</td>
<td>Date (month/year) the test unit began operating or was placed in service.</td>
</tr>
<tr>
<td>Online or Offline</td>
<td>Test unit designed for external bypass upstream of the treatment system (offline) or internal bypass within the treatment system (online).</td>
</tr>
<tr>
<td>Additional information (if needed)</td>
<td>Any additional information that may be relevant to the study. Dimensions of test unit, number of cartridges/canisters/square feet of media, media type, etc.</td>
</tr>
<tr>
<td>Storm Info</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Storm #</td>
<td>Sequential numbering of sampled and reported storm events. (storms that were targeted but did not result in valid samples - false start, equipment malfunctions, etc. - should not be included in numbering)</td>
</tr>
<tr>
<td>Storm start date</td>
<td>Date (month, day, year) that precipitation started.</td>
</tr>
<tr>
<td>Storm start time</td>
<td>Time of day (in military time) that precipitation started.</td>
</tr>
<tr>
<td>Precipitation Volume</td>
<td>Total event precipitation (in inches).</td>
</tr>
<tr>
<td>Precipitation Duration</td>
<td>Duration of precipitation (in hours).</td>
</tr>
<tr>
<td>Antecedent Dry Period</td>
<td>Duration (in hours) of the dry period prior to the storm event. Dry period defined as 6 consecutive hours with less than 0.04 inches of rain.</td>
</tr>
<tr>
<td>Influent Flow Start Date</td>
<td>Date (month, day, year) flow through the test unit started.</td>
</tr>
<tr>
<td>Influent Flow Start Time</td>
<td>Time of day (in military time) that flow through the test unit started.</td>
</tr>
<tr>
<td>Influent Storm Volume</td>
<td>Total volume of influent flow volume (in cf) recorded during the storm event.</td>
</tr>
<tr>
<td>Influent Peak Flow</td>
<td>Peak influent flow rate (in cfs) recorded during the storm event.</td>
</tr>
<tr>
<td>Influent Flow Duration</td>
<td>Duration (in hours) of influent flow recorded during the storm event.</td>
</tr>
<tr>
<td>Influent Sample ID</td>
<td>Unique ID used to identify influent sample.</td>
</tr>
<tr>
<td>Influent composite or grab sample</td>
<td>Note whether the influent sample was a grab or composite sample.</td>
</tr>
<tr>
<td># of Influent Aliquots</td>
<td>The number of equal-volume samples collected during a storm event that are combined to create the influent composite sample (not relevant for grab samples).</td>
</tr>
<tr>
<td>Influent Storm Event Coverage</td>
<td>The percentage of the total storm volume (or percentage of the 24-hour storm volume for storms lasting more than 24 hours) that the collected influent aliquots represent.</td>
</tr>
<tr>
<td>Effluent Storm Volume</td>
<td>Total volume of effluent flow volume (in cf) recorded during the storm event.</td>
</tr>
<tr>
<td>Effluent Peak Flow</td>
<td>Peak effluent flow rate (in cfs) recorded during the storm event.</td>
</tr>
<tr>
<td>Effluent Flow Duration</td>
<td>Duration (in hours) of effluent flow recorded during the storm event.</td>
</tr>
<tr>
<td>Effluent Sample ID</td>
<td>Unique ID used to identify effluent sample.</td>
</tr>
<tr>
<td>Effluent composite or grab sample</td>
<td>Note whether the effluent sample was a grab or composite sample.</td>
</tr>
<tr>
<td># of Effluent Aliquots</td>
<td>The number of equal-volume samples collected during a storm event that are combined to create the effluent composite sample (not relevant for grab samples).</td>
</tr>
<tr>
<td>Effluent Storm Coverage</td>
<td>The percentage of the total storm volume (or percentage of the 24-hour storm volume for storms lasting more than 24 hours) that the collected effluent aliquots represent.</td>
</tr>
<tr>
<td>Bypass Storm Volume</td>
<td>Total volume of bypass flow volume (in cf) recorded during the storm event.</td>
</tr>
<tr>
<td>Bypass Peak Flow</td>
<td>Peak bypass flow rate (in cfs) recorded during the storm event.</td>
</tr>
<tr>
<td>Bypass Flow Duration</td>
<td>Duration (in hours) of bypass flow recorded during the storm event.</td>
</tr>
</tbody>
</table>
Sample Info (Tape Parameters) - for TAPE required parameters: TSS, dissolved and total copper and zinc, hardness, pH, total phosphorus, orthophosphate, NWTPH-Dx, PSD

<table>
<thead>
<tr>
<th>Storm #</th>
<th>Sequential numbering of sampled storm event, as recorded on Storm Info tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID</td>
<td>Unique ID used to identify influent or effluent sample, as recorded on the Storm Info tab.</td>
</tr>
<tr>
<td>Sample Date</td>
<td>Date (month, day, year) either the grab sample or last aliquot of composite sample was collected.</td>
</tr>
<tr>
<td>Sample Time</td>
<td>Time (in military time) either the grab sample or last aliquot of the composite sample was collected.</td>
</tr>
<tr>
<td>Influent or Effluent</td>
<td>Selected “Influent” or “Effluent” from drop down list to indicate if sample was collected from influent or effluent.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Select TAPE parameter from drop down list.</td>
</tr>
<tr>
<td>Unit</td>
<td>Units automatically associated with selected parameter.</td>
</tr>
<tr>
<td>Value</td>
<td>Reported result value for selected parameter. Please ensure value matches the associated units for the parameter. For non detects record the method detection limit in this field and use the appropriate flag in the “Flag” column.</td>
</tr>
<tr>
<td>MDL</td>
<td>Laboratory method detection limit for selected parameter.</td>
</tr>
<tr>
<td>Flag</td>
<td>Select appropriate laboratory flag to qualify data result, if necessary.</td>
</tr>
<tr>
<td>Flag Definition</td>
<td>If “Other” was selected in the “Flag” column, provide definition of data qualifier.</td>
</tr>
</tbody>
</table>

Sample Info (Other Parameters) (for other non-TAPE required parameters collected during study)

<table>
<thead>
<tr>
<th>Storm #</th>
<th>Sequential numbering of sampled storm event, as recorded on Storm Info tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID</td>
<td>Unique ID used to identify influent or effluent sample, as recorded on the Storm Info tab.</td>
</tr>
<tr>
<td>Sample Date</td>
<td>Date (month, day, year) either the grab sample or last aliquot of composite sample was collected.</td>
</tr>
<tr>
<td>Sample Time</td>
<td>Time (in military time) either the grab sample or last aliquot of the composite sample was collected.</td>
</tr>
<tr>
<td>Influent or Effluent</td>
<td>Selected “Influent” or “Effluent” from drop down list to indicate if sample was collected from influent or effluent.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Name of parameter for reported result.</td>
</tr>
<tr>
<td>Unit</td>
<td>Units for reported result.</td>
</tr>
<tr>
<td>Value</td>
<td>Reported result value for selected parameter. For non detects record the method detection limit in this field and use the appropriate flag in the “Flag” column.</td>
</tr>
<tr>
<td>MDL</td>
<td>Laboratory method detection limit for selected parameter.</td>
</tr>
<tr>
<td>Flag</td>
<td>Select appropriate laboratory flag to qualify data result, if necessary.</td>
</tr>
<tr>
<td>Flag Definition</td>
<td>If “Other” was selected in the “Flag” column, provide definition of data qualifier.</td>
</tr>
</tbody>
</table>
Appendix C: Evaluating Stormwater Treatment Technologies with Long Detention Times
PREFACE

This modification to the Washington State Department of Ecology (Ecology) publication: Technical Guidance Manual for Evaluating Emerging Stormwater Treatment Technologies: Technology Assessment Protocol – Ecology (TAPE) (Ecology 2018a) provides a method for evaluating stormwater treatment technologies with long detention times. The method can be used in all of Washington State but may be most useful in Western Washington, with its prolonged periods of winter wet weather and frequent back to back storm events.

This document includes content specific to project planning and data analysis for BMPs with long detention times. Proponents following this protocol should adhere to all requirements of the most recent TAPE guidance except as noted in the bullets below. This bulleted list does not encompass every exception to TAPE, but covers the major sections that are not applicable. Proponents should coordinate with Ecology prior to preparing a Quality Assurance Project Plan (QAPP) if there are questions or clarifications about which TAPE guidelines or criteria are applicable to this long detention method.

The Storm Event Guidelines section (Ecology 2018a; Table 5, p. 14) does not apply; however, as part of the study design proponents will need to determine the amount of rainfall that is necessary to produce sufficient and representative flow through the BMP. This is outlined further in the Estimating the Number of Sampling Days section.

In the Water Sampling Procedures (Ecology 2018a; p. 21), Sampling Methodology #4 – Discrete Flow Sampling and #5 – Combination Method do not apply. These methods involve sampling within individual storm events – a time resolution too fine for BMPs with long detention times.

The size of BMPs with long detention times precludes the possibility of full-scale laboratory studies. The Supplemental laboratory testing procedures section (Ecology 2018a; pgs. 24-25) does not apply.

The Storm Event Data and Individual Storm Report (Ecology 2018a; pgs. 45-46) requirements apply. All other data analysis protocols outlined in Data Summaries and Analysis (Ecology 2018a; pgs. 44-49) are essentially replaced in this modification. Methods for data analysis are outlined in the Data Evaluation Methodology of this modification.

INTRODUCTION

The Stormwater Management Manual for Western Washington (SWMMWW) (Ecology 2012) and Stormwater Management Manual for Eastern Washington (SWMMMEW) (Ecology 2018b) include design criteria and performance goals for stormwater treatment facilities in the state of Washington. These criteria ensure stormwater treatment facilities meet performance goals for new development and redevelopment. Volume V, Chapter 12 of the SWMMWW and Chapter 5, Section 12 of the SWMMMEW discuss emerging treatment technologies, however, neither manual provide criteria for the evaluation, selection or sizing of emerging technologies because the
technologies and knowledge of them evolve rapidly. Methods for evaluating the performance of emerging stormwater treatment technologies are specified in TAPE.

TAPE includes technical guidelines for assessing stormwater BMPs for certification in Washington State. The methods presented in TAPE are commonly used in stormwater BMP monitoring and apply to BMPs with short detention times, however, Ecology recognizes the need for an evaluation protocol suitable for BMPs with long detention times. This appendix provides a method for the evaluation and certification of BMPs with long detention times.

CATEGORIZING BMPs IN TERMS OF DETENTION TIME

Detention time is the time that it takes a parcel of water to pass through a BMP. Detention time is defined mathematically as:

\[\tau = \frac{V}{Q} \times \frac{1 \text{ hour}}{3600 \text{ seconds}} \]

where:

- \(\tau \) = detention time in hours
- \(Q \) = flow rate through BMP in ft\(^3\)/sec
- \(V \) = volume of BMP in ft\(^3\)

For BMPs with short detention times such as hydrodynamic devices, \(\tau \) is typically on the order of minutes. This is a short time period relative to typical storm durations of hours. BMPs with long detention times, with a \(\tau \) of hours or days, include detention ponds, sand filters, and other large BMPs. While this description serves as a rough guideline, the distinction between a BMP with a short or long detention time, as defined in this document, is based on the comparability of its effluent with its influent. Proponents should consider the following points when categorizing a BMP as short or long detention. These points are detailed further in Figure 1.

- A relatively long residence time within the BMP on the order of hours rather than minutes.
- A detention time longer than a typical storm duration.
- A parcel of water exiting the BMP does not represent a parcel concurrently entering the BMP.

Proponents should categorize the stormwater BMP as long- or short-detention on a case-by-case basis before developing a sampling design plan. For BMPs evaluated following this method, the QAPP submitted to the TAPE program must include a description of how the BMP was determined to be a long-detention BMP.
SHORT-DETENTION VS LONG DETENTION BMP EVALUATION

Stormwater BMPs with short detention times are typically evaluated using a traditional paired sampling approach. Paired influent and effluent samples are collected concurrently to compare the quantity and quality of water flowing into the BMP with that flowing out. For BMPs with short detention times a parcel of water flowing out is essentially the same parcel of water that is flowing in, so influent pollutant concentrations can be compared directly with effluent concentrations.

For long detention BMPs, the paired sampling approach may not be appropriate since it cannot be assumed that a sampled parcel of water exiting the BMP is mostly the same parcel of water that was concurrently sampled entering the facility. In addition, in wet climates with frequent back to back storm events it may difficult to isolate inflow and outflow events. The outflow from one event may not stop before inflow from the next event begins. The following two figures further illustrate why the traditional paired sampling approach for evaluating stormwater BMPs may not be appropriate for long detention BMPs.

In long detention BMPs there is often a considerable hydraulic lag time, or delay, in both the onset and peak of inflow and outflow. There is also often a dampened, or less intense and more drawn out, outflow peak. In addition, as shown in Figure 1, a given effluent concentration can be associated with more than one influent concentration, depending on whether the pollutant concentrations are on the rise or decline. As a result, with long detention BMPs it cannot be confidently stated that “what is going in is what is coming out”.

The problem of monitoring BMPs with long detention times has gone largely unrecognized in the field of BMP monitoring and evaluation. There is little in the literature concerning the issue. Strecker noted the need for enough data during storms to comprise a continuous sample over an extended period (Strecker, et al 2001). Robert Pitt, in response to an inquiry, stated that seasonal mass sums are best, requiring almost complete sampling, or at least complete flow monitoring and adequate water quality sampling to calculate the influent and effluent concentrations within acceptable levels of error (Pitt 2006).

One recognized method to evaluate long detention BMPs is to compare water quality results from the entire inflow hydrograph to that of the outflow hydrograph (Figure 2). If the volume of inflow is comparable to the volume of outflow, the BMP efficiency can be readily determined. However, this method may be difficult in wet climates, like the Pacific Northwest, where storms are not always distinct events preceded and followed by dry periods. In this type of climate flows from one event may not stop before the next event begins and therefore it may be not possible to isolate inflow and outflow events.

This TAPE long detention BMP modification uses an alternative BMP evaluation method for instances when the analysis of paired data or of the entire storm hydrograph is not possible. This method, detailed in the next section, targets 24-hour time periods rather than storm events, and deliberately decouples randomly collected, not paired, influent and effluent samples.
TAPE LONG DETENTION BMP EVALUATION METHOD - OVERVIEW

Following the TAPE long detention BMP evaluation method, influent and effluent samples shall be collected not as pairs, but in a true random fashion. With this method, given sufficient data, values for influent and effluent parameters will be representative, while derived independently. Given a sufficiently large sample size, aggregate influent and effluent data can be compared and BMP effectiveness quantified.

This strategy for data collection was developed by Shapiro and Associates for the Bellevue Utilities Department for Evaluating BMPs with long detention times in Lakemont, Washington (Shapiro and Associates, 1999). The system employed two sand filters and the detention time was approximately 42 hours.

Traditional paired sampling targets distinct storm events and collects flow-weighted samples that represent the entire storm event. The flow-weighted concentration is the Event Mean Concentration (EMC). The TAPE long detention BMP evaluation method targets randomly selected 24-hour periods and collects flow-weighted samples that represent any flow that occurs during that 24-hour period. The flow-weighted concentration is the Sample Mean Concentration (SMC).

TAPE LONG DETENTION BMP EVALUATION METHOD - STUDY DESIGN

The TAPE long detention BMP evaluation method is based on a statistical approach that involves three steps:

1) Determine the minimum number of samples;
2) Estimate the number of random sampling dates necessary to successfully collect the minimum number of samples; and

3) Schedule the sampling days through a random process prior to the sampling season.

MINIMUM NUMBER OF SAMPLES

A minimum of 15 valid influent and 15 valid effluent samples are required to evaluate the BMP effectiveness following the long detention method. Valid samples must meet the sample collection requirements outlined in Table 1, and the paragraphs below.

In addition to meeting the sample collection requirements outlined in Table 1, a minimum of 15 influent samples must fall within the required influent range (Table 2). Results from influent samples that don’t fall within the influent range should not be discarded. All influent samples, regardless of whether they meet TAPE influent concentration criteria, and all effluent samples must be included in the analyses.

There is no maximum sampling effort requirement for this protocol. Proponents shall continue sampling until all of the requirements are met:

- Sample collection requirements (Table 1)
- Influent concentration requirements (Table 2), and
- Statistical requirements (Table 2)

This long detention BMP method does not require there to be equal number of influent and effluent samples, however, influent and effluent monitoring shall occur for the same duration. If the influent monitoring is extended to meet any of the above requirements, monitoring of the effluent must also be extended and vice versa. Any additional sampling days added on to meet the requirements listed above should be randomly scheduled as outlined in the Scheduling the Sample Days section below.

Table 16 Sample Collection Requirements for Automated, Flow-Proportional Composite Sampling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum aliquot number</td>
<td>The number of equal-volume samples collected during a storm event that are combined to create a composite sample</td>
<td>10 aliquots (^{a})</td>
</tr>
</tbody>
</table>
| Storm event coverage | The percentage of the total storm volume that the collected aliquots represent | For storm events lasting less than 24 hours, samples shall be collected for at least 75% of the storm event hydrograph (by volume). For storm events lasting longer than 24 hours, samples shall be collected for at least 75% of the hydrograph (by volume) of the first 24 hours of the storm.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum sampling duration</td>
<td>Time in hours between the collection of the first and last aliquots</td>
<td>36 hours</td>
</tr>
<tr>
<td>Minimum number of samples</td>
<td>Number of storm events with successfully collected flow-proportional composite samples that meet the influent concentration ranges and the storm event guidelines</td>
<td>15 samples</td>
</tr>
</tbody>
</table>

Ecology may accept as few as 7 aliquots. Proponents must include rationale in the TER why less than 10 aliquots were collected, but the sample accepted.
This page intentionally left blank
Table 17. Influent Range, Minimum Number of Samples, Criteria, and Required Parameters for TAPE Long Detention Modification Performance Goals

<table>
<thead>
<tr>
<th>Performance Goal</th>
<th>Influent Range</th>
<th>Minimum number of Influent and Effluent Samples</th>
<th>Criteria</th>
<th>Required Water Quality Parameters</th>
<th>Required Screening Parameters¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Treatment</td>
<td>20-200 mg/L TSS</td>
<td>15, 7 of which must be >75 mg/L</td>
<td>≥ 80% TSS removal² or effluent goal ≤ 20 mg/L³, ⁴</td>
<td>TSS</td>
<td>PSD, pH, TP, orthophosphate, hardness, total and dissolved Cu and Zn, TKN, nitrate-nitrite, fecal coliform</td>
</tr>
<tr>
<td>Dissolved Metals Treatment</td>
<td>Dissolved copper 0.005 – 0.02 mg/L</td>
<td>15</td>
<td>Must meet basic treatment goal and exhibit ≥ 30% dissolved copper removal²</td>
<td>TSS, hardness, total and dissolved Cu and Zn</td>
<td>PSD, pH, TP, orthophosphate, TKN, nitrate-nitrite, fecal coliform</td>
</tr>
<tr>
<td></td>
<td>Dissolved zinc 0.02 – 0.3 mg/L</td>
<td></td>
<td>Must meet basic treatment goal and exhibit ≥ 60% dissolved zinc removal²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus Treatment</td>
<td>Total phosphorus 0.1 – 0.5 mg/L</td>
<td>15</td>
<td>Must meet basic treatment goal and exhibit ≥ 50% total phosphorus removal²</td>
<td>TSS, TP, orthophosphate</td>
<td>PSD, pH, hardness, total and dissolved Cu and Zn, TKN, nitrate-nitrite, fecal coliform</td>
</tr>
<tr>
<td>Oil Treatment</td>
<td>Total petroleum hydrocarbons >10 mg/L</td>
<td>15</td>
<td>Daily average effluent TPH concentration <10 mg/L³; Maximum effluent TPH concentration of 15 mg/L for a discrete (grab) sample³</td>
<td>NWTPH-Dx</td>
<td>pH, TP, orthophosphate, hardness, total and dissolved Cu and Zn, TKN, nitrate-nitrite, fecal coliform</td>
</tr>
<tr>
<td>Pretreatment</td>
<td>50-100 mg/L TSS</td>
<td>15</td>
<td>≥ 50% TSS removal²</td>
<td>TSS</td>
<td>PSD, pH, TP, orthophosphate, hardness, total and dissolved Cu and Zn, TKN, nitrate-nitrite, fecal coliform</td>
</tr>
</tbody>
</table>

¹ Screening parameters are required to be analyzed on three of the composite samples (or three in situ samples for pH) collected during the monitoring period (preferable spread throughout the monitoring period, with one sample collected towards the beginning, one in the middle, and one towards the end). Proponents may also choose to analyze the screening parameters for additional storm events.

² The lower one-sided 95 percent confidence interval around the mean removal efficiency for the treatment system being evaluated must be higher than this performance goal to meet the performance goal with the required 95 percent confidence. The upper one-sided 95 percent confidence interval around the mean effluent concentration for the treatment system being evaluated must be lower than this performance goal to meet the performance goal with the required 95 percent confidence.

³ For TSS only, the proponent may choose to evaluate their system against an effluent concentration goal of ≤ 20 mg/L.
This page intentionally left blank
ESTIMATING NUMBER OF RANDOM SAMPLING DAYS

As part of the study design, estimate the number of random sampling days within your study period that are needed to collect a minimum of 15 samples. Whether more are needed will depend on 1) how much runoff is needed to produce flow through the system and the percentage of time there is expected to be sufficient and representative inflow and outflow, which in turn will depend on the expected precipitation patterns at the project site; and 2) whether statistical requirements have been met.

Historic rainfall data can be downloaded from the National Weather Service website (http://w2.weather.gov/climate/xmacis.php?wfo=sew). As shown in Figure 3, select the location (nearest to the project site), product (Calendar day summaries), Year range (por¹ – 2017), Variable (precipitation), and Summary (mean).

The historic rainfall data will give you mean rainfall data for each day of the year. Proponents should determine how much rainfall is necessary to produce sufficient inflow and outflow from the BMP. Proponents should then use the historic rainfall data to estimate the number of days during the proposed study period that will meet this rainfall requirement. This will determine how many random attempts need to be made to successfully collect a minimum of 15 samples. As an example:

- Proposed study period is 1.5 years, or 548 days.
- >0.20” of rain needed for sufficient runoff

¹ "por" is the default entry, for first year of record. A more recent date should be entered if a case is made that it's more representative, e.g. if there's documentation that precipitation has been trending up or down over time.
Historic rainfall data shows an average of 186 days with >0.20” of rain. 186 runoff days/548 days in study period = 34% chance that a random sampling day will actually result in sufficient flow. 15 samples/34% = 44 target days.

In this example 44 target days should be identified within the 548 day period. Because of the great variation of rainfall between the wet (October through May) and dry (June through September) seasons, it may be best to calculate this separately for each season. Additional target days are recommended to account for days of equipment malfunction, operator error, etc.

SCHEDULING THE SAMPLING DAYS

Consecutively numbering the days from first to last dates of the proposed study period ensures a random distribution of sampling events. A random number generator, such as that in Microsoft Excel®, can be set to generate numbers between the first and last day of the study period to select those dates as sampling days. This process shall be done for both the inflow and the outflow monitoring locations, since they are to be sampled independently.

Proponents can choose the start and stop time of their 24-hour period that works best for their field schedule (e.g. 10am to 10am on consecutive days). This start and stop time should remain consistent throughout the study.

Samples shall be collected as long as there is at least 6 hours of flow during the predetermined 24-hours. Flows lasting less than 6 hours can be sampled if they represent at least 75% of the total event runoff volume.

In addition to the randomly scheduled sampling days, proponents shall target at least one first flush event. This exception to the protocol of random sampling allows for the inclusion of important first-flush events that occur after several days or more of no precipitation, such as occur during the dry season. As with sampling individual storm events under standard TAPE, storms must meet the guidelines outlined in Table 5 of TAPE and samples must represent at least 75% of the hydrograph (by volume) of the first 24 hours of the storm.

SAMPLING METHODOLOGY

Automated flow-proportional composite sampling methods, as outlined in the TAPE protocols, shall be followed. Following this method, proponents will use an automated sampler to collect a minimum of 10 aliquots over the duration of the 24-hour period and composite them in proportion to the flow.

In addition to the water quality samples, continuous inflow, outflow, and bypass flow measurements shall be collected for the entire study period. These measurements are needed to calculate mass (load) based treatment efficiency on a seasonal or annual basis. Continuous flow measurements are also needed to evaluate bypass frequency as outlined in TAPE.

2 Ecology may accept as few as 7 aliquots. Proponents must include rationale in the TER why the sample was deemed acceptable if less than 10 aliquots were collected.
DATA EVALUATION METHODOLOGY
Data evaluation methods for this long detention BMP modification vary slightly from those outlined in TAPE (Ecology 2018a). As outlined in TAPE, proponents must produce a summary of the sample event data and an Individual Sample Report (ISR) for each sampled storm event summarizing rainfall, hydrologic, and pollutant data.

However, the following methods replace the TAPE sections:

- Statistical Comparison of Influent and Effluent Pollutant Concentrations;
- Pollutant Removal Efficiency Calculations; and
- Statistical Evaluation of Performance Goals.

In addition, the TAPE requirement of calculating Pollutant Removal as a Function of Flow Rate does not apply to long detention BMP evaluations.

STATISTICAL COMPARISON OF INFLUENT AND EFFLUENT POLLUTANT CONCENTRATIONS
The proponent must conduct statistical analysis to determine whether there are significant differences in pollutant concentrations between the influent and effluent. The specific null hypothesis (H_0) and alternative hypothesis (H_a) for these analyses are as follows:

H_0: Effluent concentrations are equal to or greater than influent concentrations.

H_a: Effluent concentrations are less than influent concentrations.

To evaluate these hypotheses, proponents should use a Wilcoxon Rank Sum Test; also called Mann-Whitney-Wilcoxon, Wilcoxon-Mann-Whitney, or Mann Whitney U test, to compare the influent and effluent performance data. (This is a nonparametric test that does not require normal data distribution, and is appropriate when working with data that is not paired.) Statistical significance should be assessed based on an alpha (α) level of 0.05.
POLLUTANT REMOVAL EFFICIENCY CALCULATIONS

The proponent must calculate removal efficiencies for each measured pollutant using both Method #1: Pollutant Removal Efficiency – Concentration Based and Method 2: Pollutant Removal Efficiency – Mass Loading Based, as outlined below.

Method #1: Pollutant Removal Efficiency – Concentration Based
The reduction in pollutant concentration across all of the sample events is calculated as:

\[
\frac{\bar{C}_{in} - \bar{C}_{out}}{\bar{C}_{in}} \times 100
\]

Where:
- \(\bar{C}_{in} \) = Mean influent concentration from all sampled events
- \(\bar{C}_{out} \) = Mean effluent concentration from all sampled events

Method #2: Pollutant Removal Efficiency – Mass Loading Based
The reduction in pollutant load across all of the sample events is calculated as:

\[
\frac{\left(\sum_{i=1}^{n} (C_{i, in} \times V_{i, in}) - \sum_{i=1}^{n} (C_{i, eff} \times V_{i, eff})\right)}{\sum_{i=1}^{n} (C_{i, in} \times V_{i, in})}
\]

Where:
- \(C_{i, in} \) = influent pollutant concentration for influent sample event i
- \(V_{i, in} \) = influent flow volume for influent sample event i
- \(C_{i, eff} \) = effluent pollutant concentration for effluent sample event i
- \(V_{i, eff} \) = effluent flow volume for effluent sample event i
- \(n \) = number of influent or effluent sample events

The calculated pollutant removal efficiencies should be presented in the Technology Evaluation Report. However, the removal efficiency associated with the lower one-sided 95% confidence interval (or effluent concentration associated with the upper one-sided 95% confidence interval), as detailed in the next section, shall be used to determine whether applicable performance goals were met.

3 Proponents should contact Ecology in advance of preparing a QAPP if the BMP they are testing is designed to infiltrate some or all of the effluent flow.
STATISTICAL EVALUATION OF PERFORMANCE GOALS

The proponent must conduct statistical analyses to determine whether the collected data demonstrate that the treatment system met applicable performance goals specified in Table 1.

To evaluate the performance goals the proponent must use bootstrapping to compute confidence intervals around the concentration based and mass loading based pollutant removal efficiencies or the effluent concentration. The bootstrap method relies on sampling with replacement from a given dataset. With a dataset of sample size \(n \), \(n \) elements from the dataset are drawn randomly with replacement and an equal probability of being drawn each time. The desired sample statistic is performed on this resampled dataset, and the process is repeated for many repetitions.

Proponents may use the Long Detention TAPE Bootstrap Tool, created for this protocol and available on the TAPE website, for the bootstrap analysis. This tool creates influent and effluent data sets by randomly selecting \(n \) (with replacement) measurements and calculates the mean influent and mean effluent concentration or load from these resampled data sets. For basic, dissolved metals, and phosphorus treatment with goals that are expressed as a minimum removal efficiency (e.g., 80 percent TSS removal, 30 percent dissolved copper removal, 60 percent dissolved zinc removal, and 50 percent total phosphorus removal), the bootstrap tool calculates the lower one-sided 95% confidence interval around the removal efficiency using these mean influent and effluent concentrations or loads.

For basic (TSS) treatment only, the proponent may choose to evaluate the system against an effluent concentration goal of \(\leq 20 \) mg/L. For this analysis the bootstrap tool will calculate the upper one-sided 95% confidence interval around the mean effluent concentration\(^4\).

DATA PRESENTATION

Proponents shall present all influent and effluent data on a Tukey style notched box-and-whisker plot. An example shown in Figure 4 graphically depicts the distribution of influent and effluent data sets collected from two sand filters in Lakemont, WA (Appendix C-2).

In Figure 4, the Tukey box-and-whisker plot includes data-point overlay and the mean for each boxplot. Boxplots show:

- Bottom, middle, and upper box horizontal lines are 25\(^{th}\), 50\(^{th}\), and 75\(^{th}\) percentiles, respectively.
- 25\(^{th}\) and 75\(^{th}\) percentiles are also referred to as first and third quartiles, or Q1 and Q3.
- Interquartile Range (IQR) is the distance between Q1 and Q3, within which lies 50% of the data.
- “Whisker” ends show the most extreme data point that is no more than 1.5 x IQR from the edge of the box (roughly 2.7 x standard deviation).
- Data beyond the “whiskers” are statistical outliers, but that does not make them invalid\(^5\).

\(^4\) This may only be done with concentration data. Load data must still be evaluated against removal efficiency goals, not effluent goals.

\(^5\) Statistical outliers do not constitute a reiterative process for their removal. Data – outliers or not – should be retained unless there's a documented problem with sample collection or analysis that points to probable error.
- Notch shoulders are an approximation of 95% confidence interval around the median.
- Horizontal line at the notch waist denotes median value; X denotes the mean value.

Figure 4. Example Tukey style box plot showing distribution of influent and effluent dissolved copper concentrations

REPORTING
Technical Evaluation Reports shall be prepared following structure and content requirements outlined in TAPE. While not a requirement, it can be beneficial for proponents to submit a preliminary data report to Ecology prior to preparing a full Technical Evaluation Report. This abbreviated report can help provide guidance as to whether there is sufficient field information to proceed in preparing a full Technical Evaluation Report as required by TAPE.
REFERENCES

Pitt, Robert. 2006. E-mail communication, October 19, 2006.

APPENDIX C-1 – DATA ANALYSIS PROCEDURE – EXAMPLE

The following example follows the data analysis procedure outlined on page 12.

The example chosen is from Lakemont data for phosphorus treatment by the south sand filter. The data used for this example appears in Appendix C-2 and is summarized in the following table.

Lakemont south sand filter – phosphorus removal

Influent Data (n=43)

<table>
<thead>
<tr>
<th>Mean Concentration (mg/L)</th>
<th>0.127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total influent mass ((C_{in,1}V_{in,1}+C_{in,2}V_{in,2}+C_{in,3}V_{in,3} \ldots)) (Kg)</td>
<td>13.21</td>
</tr>
<tr>
<td>Total Volume (L)</td>
<td>9.4130 E+07</td>
</tr>
</tbody>
</table>

Effluent Data (n=53)

<table>
<thead>
<tr>
<th>Mean concentration (mg/L)</th>
<th>0.038</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total effluent mass ((C_{eff,1}V_{eff,1}+C_{eff,2}V_{eff,2}+C_{eff,3}V_{eff,3} \ldots)) (Kg)</td>
<td>3.24</td>
</tr>
<tr>
<td>Total volume, L</td>
<td>7.9383 E+07</td>
</tr>
</tbody>
</table>

Pollutant Removal Efficiency – Concentration Based

The reduction in pollutant concentration across all of the sample events is calculated as:

\[
\left[\frac{\bar{C}_{in} - \bar{C}_{out}}{\bar{C}_{in}}\right] \times 100
\]

Where:
- \(\bar{C}_{in}\) = Mean influent concentration from all sampled events
- \(\bar{C}_{out}\) = Mean effluent concentration from all sampled events

Using the Lakemont data:

\[
\frac{[0.127 - 0.038]}{0.127} \times 100 = 69.9\% \text{ percent reduction in phosphorus concentration}
\]
Pollutant Removal Efficiency – Mass Loading Based

The reduction in pollutant load across all of the sample events is calculated as:

\[
\frac{\sum_{i=1}^{n}(C_{i,\text{in}} \cdot V_{i,\text{in}}) - \sum_{i=1}^{n}(C_{i,\text{eff}} \cdot V_{i,\text{eff}})}{\sum_{i=1}^{n}(C_{i,\text{in}} \cdot V_{i,\text{in}})}
\]

Where:

- \(C_{i,\text{in}} \) = influent pollutant concentration for sample event \(i \)
- \(V_{i,\text{in}} \) = influent flow volume for sample event \(i \)
- \(C_{i,\text{eff}} \) = effluent pollutant concentration for sample event \(i \)
- \(V_{i,\text{eff}} \) = effluent flow volume for sample event \(i \)
- \(n \) = number of influent or effluent sample events

Using the Lakemont data:

\[
\frac{\left[0.36 \text{ mg/L x } 446739 \text{ L} + 0.079 \text{ mg/L x } 1456111 \text{ L} + \cdots\right] - \left[0.062 \text{ mg/L x } 552179 + 0.047 \text{ mg/L x } 1189308 \text{ L} + \cdots\right]}{\left[0.36 \text{ mg/L x } 446739 \text{ L} + 0.079 \text{ mg/L x } 1456111 \text{ L} + \cdots\right]} \times 100 = \frac{[13.21 - 3.24]}{13.21} \times 100 = 75.5\% \text{ percent reduction in phosphorus load}
\]
APPENDIX C-2 – RAW DATA FOR DATA ANALYSIS EXAMPLE

Lakemont data: South Filter Phosphorus Data (influent)

<table>
<thead>
<tr>
<th>Year</th>
<th>Conc (mg/L)</th>
<th>Volume (L)</th>
<th>Loading (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>0.36</td>
<td>446739</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>1456111</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>0.257</td>
<td>633503</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.13</td>
<td>1807126</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>0.043</td>
<td>679604</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.108</td>
<td>628514</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.443</td>
<td>583093</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>0.095</td>
<td>1233345</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>0.057</td>
<td>792537</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>1541429</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>42271</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.109</td>
<td>42271</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.164</td>
<td>4661254</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>0.127</td>
<td>2263416</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>0.288</td>
<td>6175965</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>3786109</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>0.118</td>
<td>3291181</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>0.0604</td>
<td>1316459</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.0616</td>
<td>2219424</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.144</td>
<td>484331</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.0478</td>
<td>544584</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.156</td>
<td>1745895</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>0.0846</td>
<td>461680</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.114</td>
<td>1335734</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>0.0869</td>
<td>781420</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.178</td>
<td>257082</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.0992</td>
<td>944410</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>0.113</td>
<td>3202797</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>0.113</td>
<td>1186990</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>0.193</td>
<td>7971641</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>0.0642</td>
<td>976007</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.147</td>
<td>8433518</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>0.103</td>
<td>7561762</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>0.228</td>
<td>6526778</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td>0.0761</td>
<td>659527</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.0427</td>
<td>1578152</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.103</td>
<td>1330269</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.0522</td>
<td>4595308</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>0.0545</td>
<td>2143431</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>0.0634</td>
<td>1209611</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.101</td>
<td>1488796</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>1593765</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.158</td>
<td>3607470</td>
<td>0.57</td>
</tr>
</tbody>
</table>

$n=43$
Lakemont data: South Filter Phosphorus Data (effluent)

<table>
<thead>
<tr>
<th>Year</th>
<th>Conc (mg/L)</th>
<th>Volume (L)</th>
<th>Loading (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>0.062</td>
<td>552179</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.047</td>
<td>1189308</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.037</td>
<td>1189308</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.046</td>
<td>2123763</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.045</td>
<td>2123763</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.043</td>
<td>891981</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>2123763</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.034</td>
<td>2123763</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>2123763</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>0.083</td>
<td>2123763</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>0.028</td>
<td>2123763</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>2123763</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>2123763</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.038</td>
<td>1911387</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.039</td>
<td>1019406</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.049</td>
<td>2123763</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.029</td>
<td>1104357</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.049</td>
<td>2123763</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.038</td>
<td>467228</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.052</td>
<td>2123763</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>0.049</td>
<td>2123763</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>2123763</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.064</td>
<td>2123763</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.049</td>
<td>2123763</td>
<td>0.10</td>
</tr>
<tr>
<td>1997</td>
<td>0.0591</td>
<td>2123763</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>0.0441</td>
<td>2123763</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>0.036</td>
<td>1826437</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.0548</td>
<td>1231783</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.0275</td>
<td>1316733</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.0416</td>
<td>976931</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.0394</td>
<td>976931</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.0304</td>
<td>1274258</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.029</td>
<td>1104357</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.0222</td>
<td>382277</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.037</td>
<td>807030</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.036</td>
<td>1189308</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.0249</td>
<td>339802</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.0291</td>
<td>1104357</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.0132</td>
<td>679604</td>
<td>0.01</td>
</tr>
<tr>
<td>1998</td>
<td>0.0361</td>
<td>1489737</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.0291</td>
<td>525964</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.0508</td>
<td>3166816</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>2226108</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>0.0298</td>
<td>1810053</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.0425</td>
<td>734928</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.0256</td>
<td>1679817</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.0256</td>
<td>928134</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.0205</td>
<td>757384</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.0273</td>
<td>347830</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.0246</td>
<td>2192323</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.0242</td>
<td>585009</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.0473</td>
<td>2924076</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.0131</td>
<td>453119</td>
<td>0.01</td>
</tr>
<tr>
<td>n=53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>