### Marine conditions from 3-25-2013 at a glance

<table>
<thead>
<tr>
<th>Flight log</th>
<th>Weather</th>
<th>Water column</th>
<th>Aerial photos</th>
<th>Ferry and Satellite</th>
<th>Moorings</th>
</tr>
</thead>
</table>
| ![Mya Keyzers](image1)  
Laura Friedenberg  
Joe Leatherman | ![Skip Albertson](image2) | ![Julia Bos](image3)  
Suzan Pool  
David Mora | ![Dr. Christopher Krembs](image4) | ![Guest: Dr. Brandon Sackmann](image5) | Previous Eyes Over Puget Sound reports: [www.ecy.wa.gov/programs/eap/mar_wat/eops/](http://www.ecy.wa.gov/programs/eap/mar_wat/eops/) |

#### Personal flight log

**p. 3**

Wonderful Willapa Bay, from a bird’s-eye view.

#### Weather conditions

**p. 5**

Air temperatures and sunshine were below normal but are rising. Rivers are running above normal in central & north regions, the Nisqually in south Puget Sound is flowing below normal.

#### Water column and mooring

**p. 6, p.30**

In Puget Sound, ocean climate indices explain much of the variability in temperature, salt and oxygen. Nutrients, however, are increasing while sub-surface phytoplankton is declining!

#### Aerial photography

**p. 10**

Large red-orange-brown bloom in southern Hood Canal. Jellyfish still going strong in southern inlets. The spring phytoplankton bloom is picking up in Puget Sound.

#### Ferry and satellite

**p. 29**

MODIS satellite confirms bloom in Hood Canal and high sediment discharge from the Elwha River. Victoria Clipper IV is still in shipyard for annual maintenance. No data available.
Coast Flight: Willapa Bay and Grays Harbor

We combined the EOPS with our routine flight and sampled all of our stations. We then flew to higher elevation to take pictures. I got to see Willapa Bay from a whole new perspective at 2500 ft. It is such a beautiful and unique place.
Coast Flight: Willapa Bay and Grays Harbor

We have tried to get to the coast all month, and finally the weather allowed us to go. When it comes to field work, patience and determination are key.
Meteorological conditions typically explain up to half of the variance in observed marine variables (Moore et al. 2008), particularly in shallower waters like those of south Puget Sound. I summarized the specific conditions prevalent during the past two weeks, from north to south. Source: [http://www-k12.atmos.washington.edu/k12/grayskies/nw_weather.html](http://www-k12.atmos.washington.edu/k12/grayskies/nw_weather.html)

**Summary:**

**Air temperatures** have been below normal over Puget Sound for the past several days.

**Sunshine** levels have been below normal, but on the rise.

**Rivers** have been running above normal in central to northern regions, but trending lower; the Nisqually in south Puget Sound has been flowing below normal.

**Winds** have been mostly from the south.

Puget Sound-wide changes in algal growth conditions

1. Nutrients are increasing and their balance is shifting.
2. EOPS is documenting large and frequent algal blooms at the surface.
3. Yet, below the surface chlorophyll $a$ (proxy for algal biomass) is declining.

Increasing macro-nutrients nitrate and phosphate (A), shifting balance in the silicate to dissolved inorganic nitrogen ratio (Si:DIN) and declining chl $a$ over 0-50 m (B) point to significant long-term shifts in the growth conditions of the lower trophic food web. Annual anomalies are calculated relative to baseline conditions established from 1999 to 2008. While nitrogen and phosphate significantly increased at a rate of 3 $\mu$M and 0.3 $\mu$M per decade, respectively, chl $a$ and ratios in Si:DIN have significantly declined at rates of 65 mg (chl $a$ m$^{-2}$) and 10 (Si:DIN) units per decade. Significance is based on Spearman Rank Corr. Coef. $p=<0.05$. 
Ocean-climate indices explain some patterns in Puget Sound

A) Yearly averaged anomalies in thermal energy content of 0-50 m correlate significantly with the Pacific Decadal Oscillation Index in Puget Sound (both series are shown as a 3-year running average). B) Monthly anomalies in the thermal energy content (0-50 m) for individual stations. Red indicates anomalies higher than the 75th percentile; green indicates anomalies lower than the 25th percentile; black values fall near the median; gray denotes missed sampling events. C) The Upwelling Index at 48°N, 125°W correlates significantly with Puget Sound salt content in the 0-50 m layer. D) Monthly anomalies in salt content at individual stations. Significant correlations (Spearman Rank Correl, p <0.05) are based on 3-year running averages of ocean indicators correlating with Puget yearly Puget Sound wide averages of the anomalies.
A) The North Pacific Gyre Oscillation Index correlates significantly with dissolved oxygen anomalies in Puget Sound. B) Monthly anomalies in the dissolved oxygen content (0-50 m) for individual stations. Red indicates anomalies higher than the 75th percentile; green indicates anomalies lower than the 25th percentile; black values fall near the median; gray are missed sampling events. C) The Upwelling Index at 48°N, 125°W significantly correlates with annual anomalies in the oxygen deficit from 20 m to the bottom in Puget Sound. D) Monthly anomalies in the dissolved oxygen deficit (>20 m) shown for individual stations. The oxygen deficit is the amount of oxygen required to achieve 100% saturation in seawater at ambient conditions. Significant correlations (Spearman Rank Correl, p < 0.05) are based on 3-year running averages of ocean indicators correlated with annual averages of anomalies in Puget Sound.

We observe increasing nutrients and changing algal biomass patterns in Puget Sound:

- Algae bloom Budd Inlet 2010

**Changing Nutrient Balance**

- Nitrate
- Phosphate

![Graphs showing increasing trends for Nitrate, Phosphate, and Nutrient Balance](image-url)
Jellyfish aggregations continue to go strong in southern inlets. Strong bloom in Hood Canal. Large prop wash in Seattle waterway.

### What you see from Seattle to the sea

**Mya, Joe and Christopher in the plane.**

**Fronts and Mixing:**
- Along river plumes and the beach.

**Jellyfish:**
- Abundant in Budd, Eld, and Totten Inlets.

**Suspended sediment:**
- Natural and several human sediment activities.

**Visible blooms:**
- Red-orange-brown bloom in Hood Canal.
- Red-brown bloom beginning in Sinclair Inlet.

**Debris:**
- Occasional debris lines near rivers.
Aerial photography navigation guide, 3-25-2013

Observation Maps:

Flight Information:

- **Full day flight:** Variable visibility, some cloud reflections on water, calm

Click on numbers

Go to map
Jellyfish aggregations, wooden barge and sediment trail.
Location: Budd Inlet (South Sound), 9:38 AM
Suspended sediment and patches of jellyfish. Location: Totten Inlet, 9:46 AM
Nearshore plankton bloom and front of Columbia River plume water.
Location: Between Grays Harbor and Willapa Bay, Coast, 11:37 PM
Shellfish growers preparing their shellfish beds. Location: Willapa Bay, 1:11 PM
Shellfish growers preparing their shellfish beds. Location: Willapa Bay, 2:01 PM
Large and intense red-orange-brown plankton bloom and surface debris.
Location: Hood Canal, 3:27 PM
Large and intense red-orange-brown plankton bloom and surface debris.

Location: Hood Canal, 3:27 PM
Large and intense red-orange-brown plankton bloom.
Location: Hood Canal, 3:28 PM
Large and intense red-orange-brown plankton bloom and river plume.

Location: Hood Canal, 3:31 PM
Large and intense red-orange-brown plankton bloom and river plume.
Location: Hood Canal, 3:32 PM
Large and intense red-orange-brown plankton bloom and river plume.
Location: Hood Canal, 3:33 PM
Large and intense red-orange-brown plankton bloom.
Location: Hood Canal, 3:35 PM
Large and intense red-orange-brown plankton bloom.
Location: Hood Canal, 3:35 PM
Large and intense red-orange-brown plankton bloom.
Location: Belfair State Park, Hood Canal, 3:38 PM
Large sediment plume extending into waterway. Plume originated from the southern shore.
Location: Ballard ship canal (Seattle), 3:57 PM
Aerial photography observations in Central Sound

Date: 3-25-2013

Afternoon

Numbers on map refer to picture numbers for spatial reference
Legend to map annotations

<table>
<thead>
<tr>
<th>Plumes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Freshwater with sediment <strong>solid</strong></td>
<td></td>
</tr>
<tr>
<td>• Freshwater with sediment <strong>dispersed</strong></td>
<td></td>
</tr>
<tr>
<td>• Coastal erosion with sediment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blooms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dispersed</td>
<td></td>
</tr>
<tr>
<td>• Solid</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Debris</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dispersed</td>
<td></td>
</tr>
<tr>
<td>• Solid</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Distinct water mass boundaries</td>
<td></td>
</tr>
<tr>
<td>• Several scattered</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
Maps are produced by observers during and after flights. They are intended to give an approximate reconstruction of the surface conditions on scales that connect to and overlap with satellite images in the section that follows.

Debris:
Debris can be distinguished into natural and anthropogenic debris floating at the surface *sensu* Moore and Allen (2000). The majority of organic debris in Puget Sound is natural mixed with discarded man-made pieces of plastic, wood, etc. From the plane, we cannot differentiate the quality of debris at the surface and therefore, call it for reasons of practicality just “debris”.

Brandon Sackmann
Contact: bsackmann@integral-corp.com

Current Conditions:
Bloom in Hood Canal picked up by MODIS. Victoria Clipper IV is still in the shipyard for annual maintenance. Sensors have been checked and will soon resume collecting data.

Annual Maintenance. No Data Available.
MODIS satellite qualitatively confirms Hood Canal phytoplankton bloom and coastal Columbia River plume extending north and entering Strait of Juan de Fuca. Sediment discharging from the Elwha River after a dam removal.
Mooring observations and trends
3-12-2013 to 3-25-2013

Summary: Temperatures are rising. Lower dissolved oxygen (DO) is associated with higher salinities, with peaks in DO occurring with distinct salinity dips, meaning fresher water has higher levels of DO.

Mukilteo, Whidbey Basin near Everett:

Mukilteo Dissolved Oxygen Conditions (12-16 m)

<table>
<thead>
<tr>
<th>DO Max</th>
<th>8.1 mg/L on 03/15 at 27 PSU 8.5 °C 14.6 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO Min</td>
<td>6.8 mg/L on 03/20 at 29.4 PSU 8.4 °C 15.2 m</td>
</tr>
<tr>
<td>DO Avg</td>
<td>7.3</td>
</tr>
<tr>
<td>DO Trend</td>
<td>-0.3 mg/L</td>
</tr>
<tr>
<td>DO-Sal Corr</td>
<td>-0.85</td>
</tr>
<tr>
<td>DO-Temp Corr</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Real-time data online (click)

Mukilteo Salinity (Sal) Conditions (12-16 m)

<table>
<thead>
<tr>
<th>Sal Max</th>
<th>29.4 PSU on 03/20 at 8.3 °C 14.5 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sal Min</td>
<td>25.9 PSU on 03/17 at 8.6 °C 12.8 m</td>
</tr>
<tr>
<td>Sal Avg</td>
<td>28.9 PSU</td>
</tr>
<tr>
<td>Sal Trend</td>
<td>0.2 PSU</td>
</tr>
</tbody>
</table>

Mukilteo Temperature (T) Conditions (12-16 m)

<table>
<thead>
<tr>
<th>T Max</th>
<th>8.7 °C on 03/18 at 27.5 PSU 12.7 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Min</td>
<td>8.3 °C on 03/13 at 29.1 PSU 15.5 m</td>
</tr>
<tr>
<td>T Avg</td>
<td>8.4 °C</td>
</tr>
<tr>
<td>T Trend</td>
<td>0.1 °C</td>
</tr>
</tbody>
</table>

Left Panel: Probability of finding a specific density over the past two-week period. High probability shown in warm colors.

Right Panel: Dissolved oxygen concentration in relation to salinity. High probability shown in warm colors.
Mooring observations and trends
3-12-2013 to 3-25-2013

Summary: River flow continues to increase. In March, the freshwater layer was thicker than in February, indicated by increased depth of the 28.55 isohaline layer.

We report on thickness of the freshwater layer by monitoring our near-surface sensor. The pycnocline is often near the surface sensor (*). This is another way to interpret the amount of freshwater entering Puget Sound.

We track the depth of the isohaline where salinity is 28.55 (±0.05) to measure the thickness of the freshwater layer at our Mukilteo station. The near-surface sensor experienced tidal pressure variations of 11.0 to 16.0 meters (or dbar).

Go to our mooring website at: http://www.ecy.wa.gov/programs/eap/mar_wat/moorings.html

Real-time data online (click)
Periods of high variability coincide with times of strong upwelling. Upwelled ocean water, low in oxygen, is effecting Puget Sound’s water quality.

Admiralty Inlet mooring. The 2009-2012 plot shows seasonality and variability in temperature (red), dissolved oxygen concentration (blue) and salinity (yellow) collected on 30 min. intervals at 65-m depth. (not shown in plot) Largest gradients across the sill occur during tidal exchanges when upwelled cold, salty, low oxygen Pacific Ocean water enters Puget Sound during flood tides and warm, fresh, more oxygenated water exits Puget Sound via Admiralty Reach during ebb tide. Small variability with lesser gradients prevail during winter.
### Get data from Ecology’s Monitoring Programs

<table>
<thead>
<tr>
<th>Flight log</th>
<th>Weather</th>
<th>Water column</th>
<th>Aerial photos</th>
<th>Ferry and Satellite</th>
<th>Moorings</th>
</tr>
</thead>
</table>

#### Long–Term Monitoring Network

- **Access core monitoring data:**
  - **christopher.krembs@ecy.wa.gov**

#### Real–Time Sensor Network

- **Access mooring data:**
  - **brandon.sackmann@ecy.wa.gov**

---

**Ecology’s long-term marine monitoring stations**

**Water Quality Monitoring Stations**
- Core Flight
- Continuous (Mooring)
- Ferry track
- Morning flight
- Evening flight

**Freshwater Report:**

---

**Ferry track**
- Morning flight
- Evening flight

**Ferry and Satellite Moorings**

---

**Access mooring data:**
- **brandon.sackmann@ecy.wa.gov**
You may subscribe or unsubscribe to the Eyes Over Puget Sound email listserv by going to: http://listserv.wa.gov/cgi-bin/wa?A0=ECOLOGY-EYES-OVER-PUGET-SOUND

Many thanks to our business partners: Clipper Navigation, Swantown Marina, and Kenmore Air.

We are looking for feedback to improve our products.

Dr. Christopher Krembs
christopher.krembs@ecy.wa.gov

Marine Monitoring Unit
Environmental Assessment Program
WA Department of Ecology