Geomorphic Assessment

Touchet River
Upstream of Dayton, Washington

for
City of Dayton

November 28, 2011
Geomorphic Assessment

Touchet River
Upstream of Dayton, Washington

for
City of Dayton

November 28, 2011

GEOENGINEERS

523 East Second Avenue
Spokane, Washington 99202
509.363.3125
Geomorphologic Assessment

Touchet River
Upstream of Dayton, Washington

File No. 10291-002-00

November 28, 2011

Prepared for:
City of Dayton
111 South 1st Street
Dayton, Washington 99328

Attention: Trina Cole

Prepared by:
GeoEngineers, Inc.
523 East Second Avenue
Spokane, Washington 99202
509-363-3125

Jeffrey J. Fealko, PE
Senior Engineer

Michael K. Homza, PE
Associate

Mary Ann Reinhardt, LEG
Associate Fluvial Geomorphologist

Jodie D. Lamb, LEG
Senior Engineering Geologist

Jason R. Scott, FP-C
Associate

Jodie D. Lamb

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figures), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record. Copyright © 2011 by GeoEngineers, Inc. All rights reserved.
Table of Contents

1.0 INTRODUCTION

1.1 Background ... 1
 1.1.1 Fish Habitat ... 1
 1.1.2 Flood Control .. 1

1.2 Project Area ... 2

1.3 Project Overview .. 3
 1.3.1 Overview of Watershed and Implementation Reach Assessments 3
 1.3.2 Overview of Alternatives Development .. 3
 1.3.3 Overview of Channel Migration Zone Evaluation .. 3
 1.3.4 Report Organization ... 4

2.0 SCOPE OF SERVICES .. 4

2.1 Task 1 Project Kick-off, Compile and Review Existing Data .. 4

2.2 Task 2 Analyze Historic and Current Aerial Photos, and LiDAR 5

2.3 Task 3 Preliminary Watershed-scale Geomorphic Assessment .. 5

2.4 Task 4 Topographic Survey .. 6

2.5 Task 5 Implementation Reach Stream Reconnaissance Assessment 6

2.6 Task 6 Streambed Gravel Sampling .. 6

2.7 Task 7 Hydrologic Analysis .. 7

2.8 Task 8 Hydraulic Modeling .. 7

2.9 Task 9 Sediment Analysis .. 7

2.10 Task 10 Channel Stability Analysis .. 7

2.11 Task 11 Develop Conceptual Alternatives .. 7

3.0 PROJECT GOALS AND OBJECTIVES .. 8

3.1 Project Goals ... 8

3.2 Project Objectives .. 8
 3.2.1 Objective 1: Increase Channel Complexity And Aquatic Habitat 8
 3.2.2 Objective 2: Increase/Enhance/Diversify Riparian Habitat .. 9
 3.2.3 Objective 3: Enhance Geomorphic Stability ... 9
 3.2.4 Objective 4: Increase Floodplain Connectivity ... 9
 3.2.5 Objective 5: Increase Flood Storage Time And Volume .. 9
 3.2.6 Objective 6: Rapid Recovery Time .. 9
 3.2.7 Objective 7: Design Practicality .. 10

4.0 PRELIMINARY WATERSHED-SCALE ASSESSMENT .. 10

4.1 General ... 10

4.2 Basin Characteristics .. 10

4.3 Geology and Terrain .. 11
 4.3.1 Geology ... 11
 4.3.2 Terrain .. 11

4.4 Geomorphic Conditions ... 12
 4.4.1 Valley and Channel Form ... 12
 4.4.2 Sediment Production and Conveyance ... 12

4.5 Geomorphic Reach Divisions ... 13
4.6. Hydrology

4.7. Land Use
 4.7.1. Levee System

4.8. Habitat

4.9. Channel Migration Potential Evaluation (watershed-scale)
 4.9.1. Qualitative Approach
 4.9.2. Maximum Migration Potential Area Boundary Delineation
 4.9.3. CTUIR GIS CMZ Layer

4.10. Implementation Reach Prioritization
 4.10.1. Prioritization Criteria

4.11. Conclusions of Preliminary Watershed-scale Assessment

5.0 IMPLEMENTATION REACH ASSESSMENT

5.1. General

5.2. Stream Reconnaissance
 5.2.1. Geology/Soils
 5.2.2. Geomorphology

5.3. Streambed Gravel Sampling/Analysis
 5.3.1. Streambed Bulk Sediment Sample Analysis
 5.3.2. Wolman Pebble Count

5.4. Hydrologic Analysis
 5.4.1. Peak Flows
 5.4.2. Average Monthly Flows
 5.4.3. Average Daily Exceedance Flows

5.5. Hydraulic Model
 5.5.1. Hydraulic Computer Model
 5.5.2. Historic Hydraulic Computer Model
 5.5.3. Hydraulic Model Development
 5.5.4. Hydraulic Model Results

5.6. Sediment Transport Capacity Analysis

5.7. Channel Migration Potential Evaluation
 5.7.1. Implementation Reach Approach
 5.7.2. Channel Migration Potential Area Delineation
 5.7.3. CTUIR GIS CMZ Layer

5.8. Channel Stability Analysis

5.9. Conclusions of Implementation Reach Assessment

6.0 CONCEPTUAL ALTERNATIVES DEVELOPMENT

6.1. Overview of Alternatives Development

6.2. Selection Criteria

6.3. Levels of Effectiveness

6.4. Conceptual Alternatives
 6.4.1. Overview of all Alternatives

6.5. Construction Quantities and Cost Estimates

6.6. Benefit-to-Cost Analysis

6.7. Chart 1. Alternative Ratings and Costs
7.0 LIMITATIONS

8.0 REFERENCES

LIST OF TABLES

Table 1. Channel Gradients by Rivermile
Table 2. Preliminary Geomorphic Characteristics
Table 3. Region 9 Discharge Regression Equations
Table 4. Estimated Discharge Per Geomorphic Reach
Table 5. North Fork Touchet River Geomorphic Reach Prioritization
Table 6. South Fork Touchet River Geomorphic Reach Prioritization
Table 7. Wolf Fork Touchet River Geomorphic Reach Prioritization
Table 8. Robinson Fork Touchet River Geomorphic Reach Prioritization
Table 9. Existing Geomorphic Parameters
Table 10. Bulk Sediment Sample Gradation Summary
Table 11. Wolman Pebble Count Summary
Table 12. Watershed Sub-Basin Areas
Table 13. Discharge Summary Table (Discharges in CFS)
Table 14. Flood Discharge Comparison (CFS)
Table 15. Average Monthly Discharges (CFS)
Table 16. Base Flood Elevations
Table 17. Touchet River Sediment Transport Capacity Results - North Fork, South Fork and Touchet
Table 18. Relative Level of Importance Weighting
Table 19. Weighted Selection Criteria
Table 20. Levels of Effectiveness
Table 21. Comparison of Conceptual Alternatives
Table 22. Cost Estimates for Each Alternative
Table 23. Alternative Benefits, Costs and Benefit: Cost Ratios

LIST OF CHARTS

Chart 1. Alternative Ratings and Costs
Chart 2. Alternative Benefit: Cost Ratio

LIST OF FIGURES

Figure 1. Vicinity Map
Figure 2. Upper Touchet River Basin and Subbasins
Figure 3. Watershed-Scale Geology
Figure 4. Channel Gradient, North Fork
Figure 5. Channel Gradient, South Fork
Figure 6. Channel Gradient, Wolf Fork
Figure 7. Channel Gradient, Robinson Fork
Figure 8. Geomorphic Reaches
Figure 9a. Channel Migration Potential Area for North Fork, South Fork, Wolf Fork and Robinson Fork
LIST OF FIGURES (CONTINUED)

Figure 9b. Channel Migration Potential Area for South Fork Touchet River
Figure 9c. Channel Migration Potential Area for North Fork, Wolf Fork and Robinson Fork
Figure 10. Implementation Reach Relative Surface Model
Figure 11. Implementation Reach Geology Map and Sediment Sample Locations
Figure 12. Implementation Reach Soils Map
Figures 13a and 13b. Implementation Reach Channel Migration Potential Area

APPENDICES

Appendix A. Implementation Reach – Photo Log
 Figures A-1 through A-5. Photograph Locations
 Figures A-6 through A-41. Site Photographs
 Figures A-42 through A-59. Gravel Bar Inventory Photos
Appendix B. Laboratory Sieve Analysis and Pebble Counts
 Figures B-1 through B-3. Sieve Analysis Results
 Figure B-4. Wolman Pebble Count, Sample W-1
 Figure B-5. Wolman Pebble Count, Sample W-2
 Figure B-6. Wolman Pebble Count, Sample W-3
 Figure B-7. Wolman Pebble Count, Sample W-4
 Figure B-8. Wolman Pebble Count, Sample W-5
 Figure B-9. Wolman Pebble Count, Sample W-6
 Figure B-10. Wolman Pebble Count, Sample W-7
 Figure B-11. Wolman Pebble Count, Sample W-8
 Figure B-12. Wolman Pebble Count, Sample W-9
 Figure B-13. Wolman Pebble Count, Sample W-10
 Figure B-14. Wolman Pebble Count, Sample W-11
 Figure B-15. Wolman Pebble Count, Sample W-12
Appendix C. LiDAR Processing and GIS Data Development
Appendix D. Channel Forming Processes
Appendix E. Hydraulic Model Excerpts
 Figure E-1. Plan View
 Figure E-2. 3-D View, North Fork Touchet River
 Figure E-3. Profile View, North Fork Touchet River
 Figures E-4 through E-12. Cross Sections, North Fork Touchet River
 Figures E-13 through E-16. HEC-RAS Output Table, North Fork Touchet River
 Figure E-17. 3-D View, South Fork Touchet River
 Figure E-18. Profile View, South Fork Touchet River
 Figures E-19 through E-22. Cross Sections, South Fork Touchet River
 Figures E-23 and E-24. HEC-RAS Output Table, South Fork Touchet River
 Figure E-25. 3-D View, Touchet River
 Figure E-26. Profile View, Touchet River
 Figures E-27 through E-29. Cross Sections, Touchet River
 Figure E-30. HEC-RAS Output Table, Touchet River
Appendix F. Alternatives Assessment Workbook
 Item 1. Alternatives Analysis Workbook
 Item 2. Selection and Refinement Criteria
 Item 3. Alternatives Considered
 Item 4. Rating of Alternatives
 Item 5. Unit Cost Sheet
 Item 6. Alternative 1 Cost Estimate
 Item 7. Alternative 2 Cost Estimate
 Item 8. Alternative 3 Cost Estimate
 Item 9. Alternative 4 Cost Estimate
 Item 10. Alternative 5 Cost Estimate
 Item 11. Summary Charts

Appendix G. Conceptual Design Drawings
 Sheet 1.1. Cover Sheet
 Sheet 1.2. Vision, Goals and Objectives
 Sheet 1.3. General Legend and Notes
 Sheet 2.1. Historic Channel Alignments
 Sheet 3.1. Existing Conditions
 Sheet 3.2. Existing Topography
 Sheet 3.3. Existing FEMA Floodplain
 Sheet 3.4. Existing GeoEngineers Floodplain
 Sheet 3.5. Relative Surface Model
 Sheet 4.1. Alternative 1 – Overview
 Sheet 4.2. Alternative 1 – Plan View
 Sheet 4.3. Alternative 1 – Plan View
 Sheet 4.4. Alternative 1 – Sections
 Sheet 5.1. Alternative 2 – Overview
 Sheet 5.2. Alternative 2 – Plan View
 Sheet 5.3. Alternative 2 – Plan View
 Sheet 5.4. Alternative 2 – Sections
 Sheet 6.1. Alternative 3 – Overview
 Sheet 6.2. Alternative 3 – Plan View
 Sheet 6.3. Alternative 3 – Plan View
 Sheet 6.4. Alternative 3 – Sections
 Sheet 7.1. Alternative 4 – Overview
 Sheet 7.2. Alternative 4 – Plan View
 Sheet 7.3. Alternative 4 – Plan View
 Sheet 7.4. Alternative 4 – Sections

Appendix H. GIS Database (submitted on external hard drive)

Appendix I. Report Limitations and Guidelines for Use
1.0 INTRODUCTION

The Touchet River Geomorphic Assessment Project is the product of a progressive community-wide collaboration to improve habitat for ESA listed steelhead and bull trout while simultaneously exploring ways to attenuate flood risk to the community. The framework of this project was developed so site-specific river/floodplain restoration opportunities are identified within the context of watershed processes. To support the established framework, GeoEngineers’ multi-disciplinary team was retained to conduct a preliminary geomorphic assessment of the watershed upstream of the Highway 12 Bridge, prioritize potential restoration reaches throughout the watershed, and develop conceptual restoration solutions for an approximately 2 mile “Implementation Reach.” Guidance for this work was further developed over the course of several meetings with the Columbia County Levee Round Table Group (LRTG) and the Snake River Salmon Recovery Board’s Regional Technical Team (RTT), which are represented by local, state, and Federal government agencies as well as private landowners and non-profit organizations. This report serves as a foundation for future restoration planning and also provides conceptual restoration details for the top priority reach.

1.1. Background

1.1.1 Fish Habitat

The vision established in the Snake River Salmon Recovery plan (Recovery Plan) (Snake River Salmon Recovery Board [SRSRB] 2006) is to "develop and maintain a healthy ecosystem that contributes to the rebuilding of key fish population by providing abundant, productive, and diverse populations of aquatic species that support the social, cultural, and economic well-being of the communities both within and outside the recovery region." It is understood that this vision is a long-term endeavor to develop an ecosystem that supports abundant and widely distributed salmonid populations. To achieve this condition there must be adequate and appropriate habitat for all freshwater salmonid life-stages and free access to that habitat.

The intent of this project, as it pertains to habitat restoration, is one of many individual projects that collectively will advance ecosystem restoration. Specifically, this project will increase aquatic habitat complexity by increasing Large Woody Debris (LWD) for resting and rearing, floodplain reconnection for juvenile refugia and groundwater recharge, encourage sediment deposition for spawning and invertebrate production, and expansion of the riparian corridor for stream shade and terrestrial wildlife. Together the expected results will address most of the limiting factors identified by SRSRB (2006) in a holistic context.

1.1.2 Flood Control

The City of Dayton, Washington is located within the historic floodplain of the Touchet River. Flood control for the City is provided by a system of federally authorized levees constructed in 1964-1965. Occasional non-federally authorized levees also are present in rural areas upstream of Dayton. In addition to flood control, portions of the federally authorized levees in Dayton also provide a park-like setting that includes a recreational trail; highly valued by the community. Trees and other riparian vegetation, growing on the levees, provide shade to reduce elevated summer river temperatures for fish species.
In recent years the levees have been damaged during flood events, which have required periodic repairs. A recent inspection report for the levees indicates much of the levee system is rated as “unacceptable” (Anderson Perry 2010). The report cites sediment accumulation in the floodway (near the Highway 12 Bridge), vegetation growth on the levees and channel degradation as contributors to reduced channel capacity and levee integrity issues. If not addressed, the unacceptable rating could result in “decertification” of the levees. Consequently, portions of the City could then be reclassified into the Federal Emergency Management Agency (FEMA) floodplain, which would require affected parties to obtain expensive flood insurance and limit future development.

This report and accompanying attachments summarize the methods and results of our preliminary geomorphic assessments and conceptual alternatives analysis. We emphasize that the intent of this report is to provide foundation information to assist with current and future efforts to improve fish habitat and reduce flood risk in the project area. Preliminary design, final design and construction of the preferred conceptual alternative developed in this study will be a beginning to achieving improved fish habitat and reduction of flood effects.

1.2. Project Area

The project area is shown with respect to surrounding features on the Vicinity Map, Figure 1. The area includes the North Fork Touchet, South Fork Touchet, Wolf Fork, and Robinson Fork. This area will be referred to as the “watershed.” The watershed-scale assessment area begins upstream of the Highway 12 Bridge in the City of Dayton, Washington and encompasses:

- Main stem Touchet River from the highway 12 Bridge in Dayton, Washington to the confluence of the South and North Fork
- North Fork from the confluence with the South Fork to its headwaters at approximately river mile (RM) 22 (Refer to LiDAR Processing and GIS Data Development, Appendix C for discussion of the river mile convention used in this report)
- Wolf Fork from its confluence with the North Fork to its headwaters at approximately RM 16
- Robinson Fork from its confluence with the Wolf Fork to its headwaters at approximately RM 12
- South Fork from its confluence with the North Fork to its headwaters at approximately RM 17

The Implementation Reach-scale assessment (Implementation Reach) encompasses:

- A portion of the main stem Touchet River beginning at the North and South Forks confluence and terminating downstream approximately 2,200 feet, near the rivers’ entrance into the channelized portion of the levee floodway
- The South Fork beginning at the confluence with the North Fork and terminating upstream approximately 2,000 feet, near a private driveway bridge crossing
- The North Fork beginning at the confluence with the South Fork and terminating upstream approximately 6,100 feet at the Boalsburg Bridge
1.3. Project Overview

1.3.1. Overview of Watershed and Implementation Reach Assessments

As discussed above, key issues considered for this assessment generally include enhancement of fish habitat and attenuating flood risk. During execution of our services, GeoEngineers worked closely with the LRTG and the RTT so both habitat enhancement and flood reduction issues were considered.

GeoEngineers started the project by researching and compiling existing information. We integrated the data into a Geographic Information System (GIS) database. Using GIS we conducted a preliminary assessment of overall geomorphic characteristics of the watershed. Based on geomorphic conditions, each of the forks was separated into individual geomorphic reaches. Based on the results of the watershed-scale assessment and weighted selection criteria provided by the workgroups, we developed a prioritization matrix to objectively select a preferred Implementation Reach that has desirable characteristics for flood reduction and fish habitat enhancement.

After the Implementation Reach was selected, a topographic survey was completed of the reach in order to construct a topographic map. We completed stream reconnaissance, streambed gravel sampling and reach-level analysis within the Implementation Reach including: geomorphic, hydrologic, hydraulic, sediment transport capacity and channel stability analysis. The results of these analyses, which are discussed in greater detail in this report, were used to evaluate the appropriateness of conceptual alternatives discussed in the next section.

1.3.2. Overview of Alternatives Development

Similar to the watershed evaluation, we collaborated with the City and local work groups to develop conceptual restoration alternatives. A sequential process was followed throughout the assessment so practical conceptual alternatives could be developed and compared against one another with the intent of selecting a preferred alternative.

In general, this process involves the identification of the preferred alternative based on specific goals and objectives defined by the LRTG and the RTT. The goals are relatively general and the objectives are more specific. Each objective was then assigned a numerical weighting by the LRTG and RTT based on its relative level of importance. Several conceptual alternatives were then developed using a combination of geomorphically appropriate enhancement treatments. A numerical rating system was used to facilitate the transparent selection of a preferred conceptual alternative. Because the more important objectives and the more effective alternatives were defined in terms of higher relative values or higher levels of effectiveness, the more desirable alternatives have higher benefit ratings. A benefit-to-cost ratio was then calculated to factor in the cost of implementing the alternatives. Using this process, the alternative with the highest benefit-to-cost ratio is the most desirable or “preferred alternative.” This assessment process and the results are discussed in greater detail.

1.3.3. Overview of Channel Migration Zone Evaluation

A channel migration zone (CMZ) or Migration Potential Area (MPA) is the area where a river channel is susceptible to movement from ongoing erosion and depositional processes. The direction of
channel movement can be upstream, downstream or laterally. The degree of movement is variable and may occur as relatively slow continuous movement, over relatively long periods of time or relatively large movements over single storm events.

GeoEngineers conducted two levels of channel migration zone assessment for the Touchet River Project; qualitative and quantitative approaches. The qualitative approach was applied to channel areas upstream of the Implementation Reach and involved a broad-level assessment, which identified the maximum extent of potential future channel migration. The quantitative approach was applied to the Implementation Reach and involved detailed evaluation and delineation of high and moderate channel migration potential areas.

1.3.4. Report Organization

This report provides a summary of our watershed-scale and Implementation Reach assessment methodologies, the results of those assessments, evaluation of appropriate conceptual alternatives, and the identification of a preferred conceptual alternative. The following sections cover the overarching goals and objectives of the proposed project, which have been used to guide development of the most appropriate conceptual alternatives. The watershed and implementation reach-level conditions are then discussed in terms of processes that shaped the river and its ecosystem within the context of various ecological disciplines, including geology, hydrology, hydraulics, ecology, and geomorphology. The watershed and implementation reach-level assessments provide the basis upon which possible future enhancement alternatives may be developed. Next, the Implementation Reach prioritization evaluation is discussed followed by the conceptual alternatives development methodology. Following the body of the report are several supporting appendices, which are referenced throughout the report.

2.0 SCOPE OF SERVICES

GeoEngineers performed the following services in accordance with the ‘Agreement for Geomorphic Assessment on the Touchet River in Columbia County, Washington’ between GeoEngineers and the City of Dayton, dated August 2, 2010 and amended on December 28, 2010. These services, briefly described below, have been completed and constitute the first of several necessary phases of this project. Subsequent phases, which are beyond the scope of this contract, include: funding acquisition, preliminary design, environmental permitting, final design, construction and post-construction monitoring.

2.1. Task 1 Project Kick-off, Compile and Review Existing Data

Prior to proceeding with the scope of services described below, GeoEngineers met with the City and the LRTG to conduct a project kick-off meeting, held on July 16, 2010. The meeting allowed a more detailed understanding of project goals, objectives and discussion of our approach to meet the goals and objectives. GeoEngineers prepared a letter to the City outlining project milestone dates and deliverables, submitted on September 21, 2010.

Following the kick-off meeting GeoEngineers obtained and processed Light Detection and Ranging (LiDAR) data, researched and obtained readily available topographic, geologic and soils maps and reports, pertinent GIS data layers and hydrologic data. These data were compiled into the GIS
database, which was made available to interested stakeholders early on in the project through an on-line map service. Research and data acquisition resources used in our evaluation are included but were not limited to:

- City of Dayton and Columbia County
- Snake River Salmon Recovery Board (SRSRB)
- Washington State Department of Natural Resources (DNR)
- Washington State Department of Ecology (Ecology)
- U.S. Department of Agriculture Natural Resource Conservation Service (NRCS)
- U.S. Department of Agriculture Forest Services Administration (FSA)
- United States Geological Survey (USGS)
- United States Army Corps of Engineers (USACE)
- United States Bureau of Land Management (BLM)
- The GIS database is included as Appendix H of this report, delivered to the City via an external hard drive.

2.2. Task 2 Analyze Historic and Current Aerial Photos, and LiDAR

GeoEngineers obtained recent 2010 true-color orthophotography and LiDAR flown by Watershed Sciences, Inc. for a separate, earlier phase of the project. We also researched and obtained aerial photographs of the project area for the years 1964, 1996, and 1978. The aerial photographs were reviewed and selected photographs were georectified and incorporated into the project GIS database.

Additional aerial photography available on-line for the years 2005, 2006 and 2009 was also reviewed. Map information reviewed included General Land Office (GLO) maps dated 1874 and topographic maps from 1946, 1971 and 1983. The aerial photographs, topographic maps and LiDAR were used for the watershed and Implementation Reach assessments as described in the following sections.

In general, the 2010 orthophotography and LiDAR coverage was limited to an approximately 2,500-foot swath approximately centered on the respective watercourses. With the exception of the South Fork, LiDAR coverage did not extend to the upper reaches of the watershed. The coverage ended at approximately RM 14 on the North Fork, RM 6 on the Wolf Fork and RM 1.5 on the Robinson Fork.

2.3. Task 3 Preliminary Watershed-scale Geomorphic Assessment

Data developed during our watershed-scale assessment was used as a foundation for characterizing individual geomorphic reaches with the goal of selecting a preferred Implementation Reach. The watershed-scale assessment generally focused on:

- Channel type
- Floodplain and riparian extent
- Channel migration and relocation or avulsion
- Natural and anthropogenic disturbances
- Stream management activities such as dikes, revetments, dams, land use and infrastructure

This information was used in conjunction with a formal prioritization process to objectively select a preferred Implementation Reach for detailed assessment toward restoration concepts. This information also was used to delineate a general Channel Migration Zone (CMZ) for the upper portions of the watershed.

2.4. Task 4 Topographic Survey

A topographic survey was conducted by White Shield, Inc. within the selected Implementation Reach. The survey included acquiring 24 river cross sections at the locations shown in the Conceptual Design Drawings, Appendix G, Sheet 3.4. The cross sections extended to +3 feet above the edge of water. Select cross sections extended across portions of the floodplain. The survey was integrated with the LiDAR to construct a detailed hydraulic model of the Implementation Reach. Mapping units used were consistent with the 2010 LiDAR data collection survey control: Horizontal-UTM Zone 11 North NAD 1983/2007; Vertical-NAVD 1988. Units-Meters. All elevation data was re-projected into Washington State Plane South Coordinates NAD 1983. Vertical datum was transformed from NAVD 1988 meters to NAVD 1988 feet.

2.5. Task 5 Implementation Reach Stream Reconnaissance Assessment

A stream reconnaissance was performed within the Implementation Reach on November 10 through 12, 2010. Reconnaissance activities included, but were not limited to:

- Mapping and photo-documenting bank and terrace composition
- Documenting existing stream sediment, LWD, relic channels, irrigation diversion channels, significant areas of deposition and/or erosion
- Locating areas of past modifications including LWD and rock structures, “sugar dikes”
- Describing physical and geomorphic channel features and conditions

Using information gained from the preliminary watershed-scale assessment and our reconnaissance, we conducted a more detailed CMZ analysis for the selected Implementation Reach.

2.6. Task 6 Streambed Gravel Sampling

Twelve Wolman pebble counts were conducted at selected areas within the Implementation Reach during our reconnaissance and six bulk sediment samples from existing bars were collected for laboratory sieve analysis. We also photo-documented bank material and bar material throughout the Implementation Reach. The sediments were photographed at consistent scale to facilitate analysis. The photo log and respective photo locations are presented in Implementation Reach - Photo Log, Appendix A.
2.7 Task 7 Hydrologic Analysis
Hydrologic data was collected and analyzed on a watershed-scale to estimate river discharge values at selected return frequency intervals. The return frequency intervals analyzed ranged from the 2-year discharge up to the 100-year discharge. The hydrologic data was estimated for each geomorphic reach. A more detailed hydrologic analysis was completed for the Implementation Reach to increase the accuracy of the estimated discharge values used in the hydraulic model and alternatives analysis.

2.8 Task 8 Hydraulic Modeling
Using the Army Corps of Engineers Hydraulic Engineering Center – River Analysis System (HEC-RAS) version 4.1.0 computer model, we developed a limited hydraulic model of the river within the Implementation Reach. The model was built from a site specific survey and integrated with topographic data generated from the LiDAR survey. The physical topographic model was combined with hydrologic information and roughness values to represent the physical characteristics of the channel, banks and floodplain. This information was used to assess existing flood, habitat and geomorphic conditions within the Implementation Reach.

2.9 Task 9 Sediment Transport Capacity
The hydraulic model developed in Task 2.8 was used to analyze the ability of various flows to mobilize and transport sediment within the Implementation Reach. This model utilized streambed data and bulk samples collected from the project area (Task 6). Model results were used to develop conclusions regarding sediment transport capacity and to help confirm field derived characterizations regarding in-channel processes.

2.10 Task 10 Channel Stability Analysis
For the purposes of this project, ‘channel stability’ is considered in the context of dynamic equilibrium, and includes long term channel responses to recent and potential future changes in channel form and processes. The analysis was based largely on watershed and reach scale geomorphic characterizations, (including channel migration behavior), and the results of hydraulic and sediment transport capacity model runs within the Implementation Reach, which includes sediment transport capacity and bed mobilization thresholds.

2.11 Task 11 Develop Conceptual Alternatives
Four preliminary conceptual alternatives intended to satisfy the project goals and objectives were developed and presented to the SRSRB in December, 2010. The conceptual alternatives were modified based comments from the SRSRB and subsequently presented to the LRTG and RTT. The concepts were again revised based on further comments and presented to affected landowners for feedback during a meeting facilitated by the SRSRB at their office on February 10, 2011. The affected landowners were invited to the meeting by formal letter from the SRSRB. Comments received from the available landowners were incorporated into the concepts and an updated set provided to SRSRB in March, 2011. An objective alternatives analysis, discussed below, was completed on the preliminary concepts, which identified a preferred concept alternative.
3.0 PROJECT GOALS AND OBJECTIVES

The ultimate goals and objectives of this project are graphically depicted in Appendix G, Sheet 1.2 and discussed below.

3.1. Project Goals

The City of Dayton is a participating member in the Columbia County Comprehensive Flood Hazard Management Plan (CFHMP). The primary goal of this plan is to protect human life, health, and safety from flood events. The plan cites additional goals, which include reducing damage of repetitively flooded areas and identifying alternative solutions for flood control. Objectives cited in the CFHMP pertinent to this assessment include finding opportunities to incorporate fish enhancement projects that help mitigate flooding and using bio-engineering, purchase of property and setback levees to mitigate flood issues.

The overall goals of the City, LRTG and RTT are to increase, enhance and diversify aquatic, riparian and upland habitat in the watershed while simultaneously reducing the risk for flooding within the City and surrounding areas by addressing levee and sedimentation issues. Appropriate geomorphic design elements can be implemented to address both goals. For example, increasing floodplain connectivity increases off channel habitat for fish and increases potential flood water and sediment storage.

3.2. Project Objectives

To achieve the overall goals discussed above, seven specific objectives were identified and weighted by the LRTG and RTT. The first five objectives are primary objectives, which are used during the alternatives development process to facilitate the comparison of the enhancement alternatives. The secondary objectives are more general, cannot be as easily quantified and constitute general project guidelines and constraints. These objectives were defined, discussed and weighted by the RTT and LRTG during meetings with GeoEngineers on December 21, 2010 and January 10, 2011, respectively.

3.2.1. Objective 1: Increase Channel Complexity And Aquatic Habitat

An important objective for this project is to increase, enhance and diversify the aquatic habitat for the benefit of multiple fish species and all freshwater life stages of native fish species. Habitat should improve fish spawning, rearing, holding, and juvenile refugia. In general, these types of improvements include:

- Multiple habitat types in close proximity
- Primary pool habitat
- Substrate diversification
- Habitat structure and cover
- Side channel and low-velocity habitat
3.2.2. **Objective 2: Increase/Enhance/Diversify Riparian Habitat**

Healthy riparian habitat provides bed and bank stability, Large Woody Debris (LWD) recruitment, shade and also provides an environment for macroinvertebrates to thrive. In addition, healthy, diverse riparian and upland habitats, composed of native plant species, benefit the wider bird and wildlife communities that currently and/or historically inhabit or migrate through this river corridor. Therefore, a healthy riparian corridor benefits the entire ecosystem.

3.2.3. **Objective 3: Enhance Geomorphic Stability**

Geomorphic stability may be thought of as a channel in a state of dynamic equilibrium. As defined in Knighton, 1998, dynamic equilibrium is a state in which “small-scale adjustments are continually being made in order to maintain an approximate balance between processes and form” i.e. a channel that has sufficient area for channel forming processes to function and can exert energy in a productive beneficial manner. For example, rates of sediment deposition are balanced with rates of erosion. In the context of this project, a geomorphically stable channel is one that maintains a balance after properly functioning processes are established and is unrestricted to migrate within its high flow corridor (the floodplain area occupied during high flows).

3.2.4. **Objective 4: Increase Floodplain Connectivity**

Increasing floodplain connectivity, in itself, accomplishes several objectives including:

- Aquatic and riparian habitat
- Sediment and flood storage
- Hyporheic exchange

However, habitat improvements (objectives 1 and 2) could be realized, to a lesser extent, without increasing floodplain connectivity. Therefore, this objective specifically addresses the ecosystem benefits associated with reconnecting high flow, side channels and sloughs.

3.2.5. **Objective 5: Increase Flood Storage Time And Volume**

Increasing flood storage time and volume potentially attenuates downstream flood flows. As flood stage increases it opens up new areas to store flood water. This action detains flood waters, creates wetlands, promotes sediment deposition, and encourages groundwater recharge. Groundwater recharge helps support thriving riparian communities and base-flow cooling effects associated with hyporheic exchange.

3.2.6. **Objective 6: Rapid Recovery Time**

Recovery time is the time required for the disturbed areas to stabilize. This includes the time for new and/or disturbed vegetation to establish enough to provide sufficient erosion resistance. It also includes the time necessary for the bed and banks of the new channels to stabilize in terms of sediment transport, scour hole development, gravel bar development and bar and bank vegetation establishment. Recovery time can vary significantly between the proposed treatments and alternatives. For example; recovery time is relatively minimal for the small overflow/side channels proposed in the floodplains compared to the time necessary for a pilot channel to develop, expand,
migrate and then stabilize itself over the course of many years. Longer recovery times generally involve more maintenance and greater risk of uncertainty and failure.

3.2.7. Objective 7: Design Practicality

Rather than specifically focusing on a specific design intent (for example, enhanced fish habitat), design practicality includes a number of items that are commonly considered as project constraints or limitations. In order to be successful, alternatives must address a wide range of design considerations, including:

- Accommodating physical, practical and regulatory concerns, such as:
 - Public safety
 - Zoning, easements, setbacks, flood zones
 - Property boundaries, landowner concerns
 - Neighboring landowner concerns

- Minimizing Project Complexity
 - Minimal disturbance to existing ground, habitat, vegetation and structures
 - Minimal landowner disturbance
 - Minimal construction schedule/seasons, phasing, river diversions
 - Minimal permitting concerns
 - Minimal maintenance

While project cost is directly proportional to some of these considerations, cost is not considered in this objective. Project costs are factored into the alternatives selection process by considering the benefit-to-cost ratio, which is discussed later in this report.

4.0 PRELIMINARY WATERSHED-SCALE ASSESSMENT

4.1. General

Our preliminary assessment included reviewing published maps and literature, aerial photographs and LIDAR to identify physical characteristics of the watershed. These characteristics included, but were not limited to topography, geology, regional and local channel gradients, channel dimensions, and the composition of riverbank and stream bed materials. This information was used to better understand geomorphic processes operating within the watershed. These watershed-scale characteristics are discussed in the following sections.

4.2. Basin Characteristics

The Touchet River originates on the north flanks of the Blue Mountains within the Umatilla National Forest. The overall basin is divided into five subbasins: the South Fork, Wolf Creek, Upper North Fork, Middle North Fork and Lower North Fork. These areas are shown on the Upper Touchet River Basin and Subbasins, Figure 2. The subbasins are drained by the South, Wolf North, and Robinson Forks, which flow northward before joining the main stem Touchet River south of the City of Dayton, Washington. The North Fork originates in the vicinity of the Bluewood Ski Area and the South Fork
originates near Deadman Peak. The contributing drainage area to the main stem at the north/south fork confluence is approximately 163 square miles and includes the four forks described above and numerous smaller tributary streams. Runoff is primarily from snow melt and precipitation. However, significant flooding has occurred in the winter months from precipitation coupled with rapid snowmelt, rain-on-snow events.

4.3. Geology and Terrain

4.3.1. Geology

The upper Touchet River basin is situated near the boundary of the Columbia Basin and Blue Mountains physiographic provinces of southeastern Washington. Within the watershed, these provinces are characterized by river drainages that have incised deep canyons into the ancient flood basalt flows of the Columbia River Basalt Group (CRBG). The CRBG were formed by multiple, massive outpourings basalt lava flows which issued from fissures located near the Washington, Idaho and Oregon border during the Miocene (17.5 to 6 Million Years). Within the Touchet River watershed, the CRBG includes the Grand Ronde Basalt (Mdg) and the Wanapum Basalt (Mdw). During the Pleistocene, (1.8 million years to 11,000 years ago) the basalt was blanket by large volumes of loess (wind-deposited fine sand, silt and clay) which resulted from erosion caused by continental ice sheets, located to the north.

The present terrain and surficial geology characterizing the watershed is the result of more recent geomorphic and geologic processes. These processes include faulting and erosion of the basalt and loess, deposition of alluvium (sediments deposited by modern rivers and streams) within the river canyons, the formation of modern soils and the influences of man. Surficial geology in the vicinity of the watershed is shown on Watershed-scale Geology, Figure 3.

An additional, but important process having an influence on the watershed is that of mass wasting. Review of the DNR 2008 GIS landslide layer relative to mass-wasting in the assessment area, indicates three large landslide areas and numerous smaller landslide areas within the watershed. The first of the larger areas is located on the east canyon wall of the South Fork, offset from RM SF5 and SF6.5. This mapped landslide area is approximately 1 mile long, parallel to slope contour, and approximately 1,200 feet wide, perpendicular to slope contour. The second area is located on the Robinson Fork between RM RF2.75 and 3.5. The mapped area is approximately 1 mile long by 1 mile wide; the west half of the slide area is roughly bisected by the Robinson Fork. The third area is located east and along the ridgeline of the Robinson Fork slide. This mapped slide area measures approximately 1½ miles long by approximately 1,200 feet wide. These large landslides and the numerous smaller slides are generally mapped within the basin unit. The locations of the landslides can be viewed on the GIS database, Appendix H.

4.3.2. Terrain

Terrain within the basin consists of a series of three prominent north-trending ridgelines that descend from the northwest flanks of the Blue Mountains from elevations on the order of 5,700 feet Mean Seal Level Datum (MSL). Robinette Mountain separates the South and Robinson Forks of the Touchet River. Newby Mountain separates the Robinson and Wolf Forks, and Chase Mountain separates the Wolf and North Forks. Each of these ridgelines is dissected by numerous steep, relatively short drainages that terminate at relatively prominent alluvial fans on the valley
floors. Approximately 4 miles southeast of Dayton, the relatively narrow ridgelines give way to broad plateaus with elevations on the order of on the order of 2,000 feet. Valley floor Elevation at the downstream end of the project area, within the City of Dayton, is on the order of 1,700 feet.

4.4. Geomorphic Conditions

4.4.1. Valley and Channel Form

In the higher elevation portions of the watershed, the North Fork (RM 17.2 to 22), Wolf Fork (RM 10.9 to 16) and Robinson Fork (RM 6.3 to 11.4) are located in steep, narrow bedrock valleys. The valley widths are generally less than two channel widths and average floodplain widths are in the range of 40 to 150 feet valley wall to valley wall. In these upper reaches, the channels exhibit a generally straight planform.

In the middle to lower reaches of the North Fork (RM 0 to 17.2), Wolf Fork (0 to 10.9), Robinson Fork (RM 0 to 6.3) and the entire South Fork (RM 0 to 16.1) the valley sizes increase to widths in the range of 200 to 1,300 feet and the channels become moderately confined (valley width is greater than 2 channel widths and less than 4 channel widths) to unconfined. Average floodplain widths are in the range of 180 to 750 feet (North Fork), 108 to 600 feet (Wolf Fork), 220 to 500 feet (South Fork) and 200 to 280 feet on the Robinson Fork. In these reaches the channel planform generally consists of a single-thread moderately sinuous meander bend main stem channel. The main stem channel resides within a high flow corridor that includes one or more side channels, which cut through the forested floodplain. The main stem channel position in the valley is controlled to some degree by numerous alluvial fans located at the toe of the valley slopes. Refer to Appendix D for discussion of channel forming processes.

4.4.2. Sediment Production and Conveyance

Sediment in the watershed area is produced by several processes. In general, these include: 1) sediment delivery from the mountains, ridgelines and plateaus via the numerous tributary streams; 2) mass-wasting processes, including large and smaller landslides and debris flows, which may occur within the tributaries and/or along the valley walls during extended wet weather or intense precipitation events; 3) sediment stored in prehistoric and modern alluvial fans, located adjacent to the main stem floodplains; and 4) sediment stored on the modern alluvial floodplain. These processes and rates of sediment delivery are influenced by soil type, vegetation type and coverage, land use, climate and weathering/erosion rates. The quantities of sediment entering the channels are unknown at this time.

In the upper reaches of the watershed sediment supply is more limited. In these areas it appears sediment is transported relatively efficiently through the reach. This is due primarily to the narrow width and steeper gradient of the valleys and the associated higher stream velocities. After the sediment is conveyed through upper reaches it is deposited within the middle and lower reaches. Sediment conveyance though the middle and lower reaches is much less efficient. This is apparently due an increase in the availability of sediment volumes within the high flow corridor and floodplain, overall decrease in channel gradient, increase in valley and floodplain width and associated decrease in stream velocities. In these reaches the sediment deposited and stored in the high flow corridor and floodplain during low flow and is mobilized and transported during higher flow events. In addition, anthropogenic influences such as bridges can affect conveyance of
sediment through a river system. Based on review of aerial photographs 1996 through 2011 and discussions with the LRTG and RTT workgroups significant sediment accumulation has been identified as a continuing problem in the levee system and immediately upstream of the Highway 12 Bridge.

4.5. Geomorphic Reach Divisions

The North, South, Wolf and Robinson Forks were divided into geomorphic reaches based on watershed-scale valley and channel characteristics observable from topographic maps, aerial photographs and LiDAR. We used the Channel Process Matrix, Ecology 2003, which relates channel confinement and gradient with typical channel bed morphology as a basis for estimating channel characteristics and delineating channel reaches.

Channel gradients were calculated for each of the forks using LiDAR and 10 meter digital elevation model (DEM), in areas where LiDAR was not available. Channel gradients for each of the tributary forks are summarized in Channel Gradient by River Mile, Table 1. Graphic representations of the stream profiles for each tributary fork are shown in Channel Gradient Profile, Figures 4 through 7. Details of our channel gradient calculations are presented in Appendix C.

Based on the above information, we divided the North Fork into 10 individual reaches, the South Fork into 6 reaches, the Wolf Fork into 8 reaches and the Robinson Fork into 5 reaches. The individual reaches are shown on Geomorphic Reaches, Figure 8. The reaches are labeled NF, SF, WF and RF for the North Fork, South Fork, Wolf Fork and Robinson Forks, respectively. Each reach begins at the tributary confluence at RM 0 and progresses upstream in ascending numerical order. Characteristics of the individual reaches are summarized in Preliminary Geomorphic Characteristics, Table 2.

4.6. Hydrology

The Touchet River watershed is approximately 163 square miles in area above the confluence with Petit Creek, Figure 2. This watershed as described before consists of predominately north flowing drainages with small, short and steep side tributaries draining water from the high ridgelines and plateaus down to the main tributaries in the valley bottoms. The watershed receives on average 30 inches of precipitation a year in the form of rain and snow, with the headwater areas receiving the majority of their precipitation in the form of snow. The watershed is comprised of approximately 45% forest, with the remaining land consisting of predominately agricultural fields.

Peak flows in this watershed are attributed predominately to rain on snow events with the annual hydrograph being controlled by snowmelt in the headwaters and peaking in April. There is limited historical flow data available throughout the watershed, but there were significant flood events of record in May 1906 (est. 6,000 cfs at Dayton), April 1931 (est. 6,000 cfs at Dayton), February 1949, December 1964 and February 1996. The discharges of the 1964 and 1996 floods are not known.

To estimate discharges efficiently, accurately and for a wide range of return frequencies regression equations were utilized. The United States Geological Survey (USGS) StreamStats Program utilizes the latest regression equations to estimate discharges throughout this region (USGS, 2010). The Touchet River is located within Region 9 of the Washington State’s hydrologic regions (Knowles,
The regression equations for this region were developed from analyzing 36 historical gauge records on unregulated bodies of water with more than 10 years worth of data. Physical characteristics of the watershed were compared to discharge estimates to develop regression equations for each return interval. Within Region 9, the two most sensitive characteristics were average annual precipitation and basin area. Table 3, Region 9 Discharge Regression Equations, displays the regression equations used for selected return frequencies (Knowles, 2001 and Sumioka, 1998).

TABLE 3. REGION 9 DISCHARGE REGRESSION EQUATIONS

<table>
<thead>
<tr>
<th>Discharge Equations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{2 YR})</td>
<td>= 0.803 * (A^{0.672}) * (P^{1.16})</td>
</tr>
<tr>
<td>(Q_{10 YR})</td>
<td>= 15.4 * (A^{0.597}) * (P^{0.682})</td>
</tr>
<tr>
<td>(Q_{25 YR})</td>
<td>= 41.1 * (A^{0.570}) * (P^{0.508})</td>
</tr>
<tr>
<td>(Q_{50 YR})</td>
<td>= 74.7 * (A^{0.553}) * (P^{0.620})</td>
</tr>
<tr>
<td>(Q_{100 YR})</td>
<td>= 126 * (A^{0.538}) * (P^{0.344})</td>
</tr>
</tbody>
</table>

Notes: Discharge (Q) is in cubic feet per second (cfs), Area (A) is in square miles (mi²), and Precipitation (P) is in inches (in.).

Each geomorphic reach was analyzed within StreamStats to estimate peak flow discharges for the selected return intervals mentioned above. Table 4, Estimated Discharges Per Geomorphic Reach, displays the estimated discharges at selected return intervals for each geomorphic reach shown in Figure 8.

TABLE 4. ESTIMATED DISCHARGES PER GEOMORPHIC REACH.

<table>
<thead>
<tr>
<th>Fork</th>
<th>Reach Number</th>
<th>(Q) (2-cfs)</th>
<th>(Q) (10-cfs)</th>
<th>(Q) (25-cfs)</th>
<th>(Q) (50-cfs)</th>
<th>(Q) (100-cfs)</th>
<th>(Q) (500-cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main stem</td>
<td>1</td>
<td>1250</td>
<td>3010</td>
<td>4150</td>
<td>5140</td>
<td>6200</td>
<td>9120</td>
</tr>
<tr>
<td>North Fork</td>
<td>1</td>
<td>963</td>
<td>2420</td>
<td>3390</td>
<td>4230</td>
<td>5140</td>
<td>7670</td>
</tr>
<tr>
<td>North Fork</td>
<td>2</td>
<td>955</td>
<td>2400</td>
<td>3350</td>
<td>4170</td>
<td>5080</td>
<td>7570</td>
</tr>
<tr>
<td>North Fork</td>
<td>3</td>
<td>923</td>
<td>2310</td>
<td>3220</td>
<td>4020</td>
<td>4880</td>
<td>7280</td>
</tr>
<tr>
<td>North Fork</td>
<td>4</td>
<td>638</td>
<td>1670</td>
<td>2370</td>
<td>2980</td>
<td>3650</td>
<td>5540</td>
</tr>
<tr>
<td>North Fork</td>
<td>5</td>
<td>571</td>
<td>1480</td>
<td>2100</td>
<td>2640</td>
<td>3240</td>
<td>4910</td>
</tr>
<tr>
<td>North Fork</td>
<td>6</td>
<td>540</td>
<td>1400</td>
<td>1980</td>
<td>2480</td>
<td>3050</td>
<td>4620</td>
</tr>
<tr>
<td>North Fork</td>
<td>7</td>
<td>403</td>
<td>1030</td>
<td>1460</td>
<td>1840</td>
<td>2250</td>
<td>3430</td>
</tr>
<tr>
<td>North Fork</td>
<td>8</td>
<td>365</td>
<td>935</td>
<td>1320</td>
<td>1670</td>
<td>2050</td>
<td>3130</td>
</tr>
<tr>
<td>North Fork</td>
<td>9</td>
<td>234</td>
<td>620</td>
<td>889</td>
<td>1130</td>
<td>1400</td>
<td>2170</td>
</tr>
<tr>
<td>North Fork</td>
<td>10</td>
<td>17</td>
<td>59.4</td>
<td>94.3</td>
<td>128</td>
<td>167</td>
<td>292</td>
</tr>
<tr>
<td>Wolf Fork</td>
<td>1</td>
<td>519</td>
<td>1370</td>
<td>1950</td>
<td>2470</td>
<td>3040</td>
<td>4640</td>
</tr>
<tr>
<td>Wolf Fork</td>
<td>2</td>
<td>518</td>
<td>1370</td>
<td>1950</td>
<td>2470</td>
<td>3040</td>
<td>4640</td>
</tr>
<tr>
<td>Wolf Fork</td>
<td>3</td>
<td>353</td>
<td>959</td>
<td>1380</td>
<td>1760</td>
<td>2180</td>
<td>3370</td>
</tr>
<tr>
<td>Fork</td>
<td>Reach Number</td>
<td>Q (2-cfs)</td>
<td>Q (10-cfs)</td>
<td>Q (25-cfs)</td>
<td>Q (50-cfs)</td>
<td>Q (100-cfs)</td>
<td>Q (500-cfs)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Wolf Fork</td>
<td>4</td>
<td>350</td>
<td>949</td>
<td>1370</td>
<td>1740</td>
<td>2150</td>
<td>3330</td>
</tr>
<tr>
<td>Wolf Fork</td>
<td>5</td>
<td>347</td>
<td>942</td>
<td>1360</td>
<td>1730</td>
<td>2140</td>
<td>3310</td>
</tr>
<tr>
<td>Wolf Fork</td>
<td>6</td>
<td>341</td>
<td>923</td>
<td>1330</td>
<td>1690</td>
<td>2090</td>
<td>3240</td>
</tr>
<tr>
<td>Wolf Fork</td>
<td>7</td>
<td>170</td>
<td>470</td>
<td>684</td>
<td>877</td>
<td>1090</td>
<td>1730</td>
</tr>
<tr>
<td>Wolf Fork</td>
<td>8</td>
<td>62.4</td>
<td>187</td>
<td>282</td>
<td>369</td>
<td>469</td>
<td>769</td>
</tr>
<tr>
<td>South Fork</td>
<td>1</td>
<td>570</td>
<td>1460</td>
<td>2060</td>
<td>2590</td>
<td>3170</td>
<td>4800</td>
</tr>
<tr>
<td>South Fork</td>
<td>2</td>
<td>552</td>
<td>1400</td>
<td>1970</td>
<td>2470</td>
<td>3020</td>
<td>4550</td>
</tr>
<tr>
<td>South Fork</td>
<td>3</td>
<td>550</td>
<td>1390</td>
<td>1960</td>
<td>2450</td>
<td>3000</td>
<td>4520</td>
</tr>
<tr>
<td>South Fork</td>
<td>4</td>
<td>530</td>
<td>1330</td>
<td>1860</td>
<td>2330</td>
<td>2850</td>
<td>4300</td>
</tr>
<tr>
<td>South Fork</td>
<td>5</td>
<td>458</td>
<td>1130</td>
<td>1580</td>
<td>1970</td>
<td>2410</td>
<td>3620</td>
</tr>
<tr>
<td>South Fork</td>
<td>6</td>
<td>343</td>
<td>848</td>
<td>1190</td>
<td>1490</td>
<td>1820</td>
<td>2770</td>
</tr>
<tr>
<td>Robinson Fork</td>
<td>1</td>
<td>264</td>
<td>755</td>
<td>1110</td>
<td>1420</td>
<td>1780</td>
<td>2800</td>
</tr>
<tr>
<td>Robinson Fork</td>
<td>2</td>
<td>262</td>
<td>752</td>
<td>1100</td>
<td>1420</td>
<td>1770</td>
<td>2790</td>
</tr>
<tr>
<td>Robinson Fork</td>
<td>3</td>
<td>245</td>
<td>701</td>
<td>1030</td>
<td>1320</td>
<td>1660</td>
<td>2610</td>
</tr>
<tr>
<td>Robinson Fork</td>
<td>4</td>
<td>160</td>
<td>464</td>
<td>686</td>
<td>887</td>
<td>1110</td>
<td>1780</td>
</tr>
<tr>
<td>Robinson Fork</td>
<td>5</td>
<td>79.2</td>
<td>236</td>
<td>354</td>
<td>462</td>
<td>585</td>
<td>953</td>
</tr>
</tbody>
</table>

4.7. Land Use

Following exploration by Lewis and Clark in 1806, the area of Dayton was first settled by pioneers in 1859. Early land use was cattle grazing, however because of the fertile soil and climate grazing soon gave way to dry land grain farming. A post office was finally established in the City of Dayton in 1872 (City of Dayton, 2010). Over the years, general land use in the watershed area has evolved to include: commercial and residential development; widely spaced rural and recreational residences; large-scale agricultural consisting of dry land and irrigated farming, cattle grazing and timber harvest; and public and private road and bridge infrastructure. Modern commercial and residential land uses are concentrated near and within the City of Dayton. Upstream of Dayton the population decreases significantly turning to rural residences, which typically are located adjacent to the river in the bottom of the canyons. Dry land, wheat farming is typically located on the upper plateau and ridgelines surrounding the river valleys. Irrigated and some dry land farming and cattle grazing are the primary agricultural land uses of the river floodplains in the valley bottoms. The extreme upper reaches of the watershed are located within the Umatilla National Forest, which primary land use includes recreation, forest management and some timber harvest.

4.7.1. Levee System

As discussed in the Background section of this report, flood control for the City of Dayton is provided by a system of federally authorized levees. The approximate locations of the federally authorized levees relative to this geomorphic assessment project are shown in Figure 8. Levee embankment deficiencies recommended for correction in Anderson-Perry, 2010 included
vegetation removal, removal and management of levee encroachments, stabilization and replacement of displaced riprap and removal of sediment from riprap.

Occasional non-federally authorized levees, locally referred to as “sugar dikes” or “push up dikes” also are present in rural areas throughout the watershed. The sugar dikes typically consist of relatively low berms composed of floodplain gravel “pushed up” along the main stem channels. In many areas the river has been channelized by construction of the levees disconnecting significant portions of the floodplain.

In their Walla Wall River Watershed Study Reconnaissance Report, (USACE 1997) identified the following flood and wildlife-related concerns and opportunities for the City of Dayton and Upper Touchet Basin above Dayton. These problems/opportunities are consistent with the goals and objectives of this geomorphic assessment project.

City of Dayton Concerns:

- Failure of existing non-federal levee system to provide adequate protection against high-water events.
- Failure of the stream channel to provide adequate continuous habitat for fish.
- Failure of the floodplain to provide adequate continuous nesting opportunities for neotropical migrating birds.
- Lack of the floodplain to serve as a buffer for flood control.
- Development within the floodplain
- Flooding of Dayton sewage treatment plant

City of Dayton Opportunities:

- Increase wildlife habitat along the Touchet River
- Increase native fish habitat and allow for expansion of salmonid species in the Touchet River
- Develop open park lands along the Touchet River
- Provide increased recreational opportunities along the waterfront
- Maintain flood control facilities better and reduce future flooding
- Reduce or limit development in the floodplain

Upper Touchet Basin above Dayton Concerns:

- Land management practices impacting riparian zone and stream channel morphology
- Development in floodplain
- Flood damages
- Upper Touchet Basin above Dayton Opportunities
- Increase wildlife and native fish habitation along the upper Touchet River
- Allow for expansion of salmon species in the area
- Reduce future flood damages and/or reduce development in floodplain.

The USACE report discussed several flood reduction alternatives, which generally are located downstream of Dayton, with the exception of a headwater storage alternative on the South Fork approximately 10 miles upstream of Dayton. This alternative involves building a dam with the purpose of storing water from high winter flows and allowing releases later in the year to augment in-stream flows.

4.8. Habitat

The Touchet River Watershed, upstream from Pattit Creek, is designated as a priority restoration and protection reach in the Recovery Plan (SRSRB 2006) and Walla Walla Subbasin Plan (Walla Walla Watershed Planning Unit and Walla Walla Basin Watershed Council 2004). This designation is based largely on Major Spawning Aggregations of ESA listed Mid-Columbia ESU steelhead (Oncorhynchus mykiss) as defined by the Interior Columbia Basin Technical Recovery Team (ICTRT 2004) and SRSRB (2006). In addition to steelhead, this reach also contains other key species such as ESA listed bull trout (Salvelinus confluentus), interior redband rainbow trout (O.mykiss), Chinook salmon (O. tshawytscha), and a diverse terrestrial wildlife community.

4.9. Channel Migration Potential Evaluation (watershed-scale)

4.9.1. Qualitative Approach

Our approach to delineating the probable extent of channel migration on the upper reaches of the North, South, Wolf and Robinson Forks is based in part on the assumption that, in the absence of channel constraints, the future character of migration will be similar to the past, given similar water and sediment discharge conditions. Based on our geomorphic evaluations described below, we applied a maximum zone of future migration based on the past and current behavior of channel in terms of migration. Our approach included the following:

- Evaluation of watershed-scale geomorphic conditions discussed in Section 4.4 and summarized in Table 2.
- Review and evaluation of limited time-series aerial photographs georectified into a GIS database (channel lines and other floodplain characteristics were not digitized into GIS for this qualitative level of evaluation).
- Evaluation of channel and floodplain characteristics observable in the 2010 LiDAR GIS hillshade data, where available. We focused on the location of relict channel traces and on modern active and abandoned channels traces.
- Delineation of a maximum migration boundary.

4.9.1.1. CMZ EXCLUSION AREAS AND ANTHROPOGENIC INFLUENCES

As discussed previously, the upper reaches of the North, Wolf and Robinson Forks are confined in steep, narrow valleys. Channels in these valleys generally are straight and tend not to migrate, mostly because of resistant bank materials. Therefore, CMZ’s were not delineated for these upper reach areas.
Human activities that affect potential channel migration in the watershed include levees, revetments, road embankments, and bridge crossings among others. Although some infrastructure, such as bridges, can be observed by aerial photography and LiDAR, several other features, such as small dikes and revetments cannot be readily discerned at this broad-level of evaluation. Therefore, these features were not considered barriers to channel migration.

4.9.2. Maximum Migration Potential Area Boundary Delineation

Based on the above approach, we applied maximum migration boundary lines on either side of the channel indicating the area of maximum channel migration. Within the middle and lower portions of the watershed and the entire South Fork, the valleys become wider. With the exception of areas severely modified by farming, visual evidence of past and present channel features are located sporadically across the valley floor. The evidence includes the presence of relict channels at various locations on the flood plain, and areas where the main stem rivers appeared to be actively eroding the toes of alluvial fans. Based on the locations, and abundance, of these features, the maximum zone of migration was set to encompass the entire width of the valley floor. In cases where the CMZ boundary intersected an alluvial fan, a portion of the alluvial fan (approximately two channel widths) was included within the maximum migration zone to accommodate future erosion. In areas where the alluvial fan appeared to be deflecting the main stem channel we assumed the toe of the alluvial fan to be the edge of the boundary. The boundaries for the North, South, Wolf and Robinson Forks are shown on Figures 9a, 9b and 9c.

4.9.3. CTUIR GIS CMZ Layer

The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) prepared a CMZ GIS shapefile for the Upper Touchet River Watershed and provided the information to GeoEngineers for inclusion in the project GIS Database, Appendix H. We reviewed the CMZ shapefile data; however, we did not receive a report discussing the methodology and results. Based on our review of the shapefile, it appears the CTUIR CMZ boundaries are similar to those delineated by GeoEngineers, in that the boundaries are placed at the edge of the valley walls. In some instances the CTUIR and GeoEngineers boundaries differ. It appears that most of the differences are due to the CTUIR treatment of structures that may resist erosion. As discussed above, for the purposes of our evaluation, GeoEngineers did not consider such features as boundaries to migration.

4.10. Implementation Reach Prioritization

As discussed previously, the project goals are to increase and enhance fish habitat and reduce flood risk for Dayton and the surrounding community. To focus these goals, a formal process was undertaken to objectively select an approximately 2 mile-long Implementation Reach for detailed assessment and development of conceptual restoration alternatives. To accomplish this, GeoEngineers worked closely with the LRTG and RTT to develop selection criteria important to the local stakeholders to meet the project goals and objectives. Once the criteria were selected, numerical values of importance for each of the criteria were agreed upon and assigned by the two groups. This relative value was applied to each of the geomorphic reaches. The sum of the values resulted in a total score prioritization of the geomorphic reaches for each tributary fork. The higher values were considered a higher priority for meeting the project goals. It was also noted that selection of a preferred Implementation Reach need not be isolated to a specific geomorphic reach, but may cross into different reaches. Prioritization Criteria are discussed in the following
sections and summarized, with their respective relative values, in Tables 5 through 8 for the North, South, Wolf and Robinson Forks, respectively. These tables are located behind the table tab at the back of this report.

4.10.1. Prioritization Criteria

4.10.1.1. Geomorphic Reach Length
The longer the reach length the higher the potential for restoration project opportunities. In general, longer reaches are able to accommodate larger and more diverse habitats as well as accommodate larger flood volumes. Likewise, longer geomorphic reaches have a higher relative value than shorter reaches.

4.10.1.2. Critical Infrastructure Within 200 Feet of the Active Channel
For the purposes of this evaluation, we considered critical infrastructure to include private residences and public infrastructure, such as bridges and roadways, within 200 feet of the active channel. We assumed the fewer number of critical infrastructures near the active channel represented lower potential project complexity and associated project cost.

4.10.1.3. Ratio of 100-Year Floodplain to Reach Length
A larger available floodplain area increases the potential for floodplain connectivity, increased habitat and increased flood storage. Therefore, with respect to this analysis, larger floodplain areas were assigned higher relative values than smaller areas.

4.10.1.4. Channel Confinement
Confined channels indicate lower potential for habitat enhancement and lower flood storage benefits. Consequently, confined reaches (valley width less than 2 channel widths) were assigned the lowest relative value and unconfined channels (valley width greater than 4 channel widths) were assigned the highest.

In the extreme upper reaches of the North, Wolf and Robinson Forks, the steep channel gradient and high channel confinement suggest that little to no benefit may be recognized toward the project goals. On this basis, Reach 10 (North Fork), Reach 8 (Wolf Fork) and Reach 5 (Robinson Fork) were not considered further as potential implementation reaches.

4.10.1.5. Future Channel Response (Channel Migration)
At the watershed scale, reaches that have the highest potential for favorable channel responses will typically contain wider floodplain areas, lower gradients, a sufficient sediment supply, the ability to store or retain sediment and floodplain/channel connectivity. These areas also provide increased ecosystem-level function by refreshing and creating new habitat.

Evaluation of future channel response is based on channel changes observed in aerial photographs from 1964, 1978, 1996, 2006, 2010 and LiDAR 2010. Relative values increase with increased historic channel movement.

4.10.1.6. Regional Technical Team (RTT) Opinion
Review and support of an Implementation Reach by local RTT increase potential that the selected reach addresses the project goals and objectives. Individuals in the RTT have unique perspectives.
and experience that need to be considered as part of a prioritization analysis. Therefore, Relative Value increases with the level of RTT agreement.

The results of the prioritization indicate the lower reaches of the assessment area present greater potential opportunities and benefit for restoration projects. The LRTG and RTT agreed that an Implementation Reach which included portions of the North Fork, South Fork and main stem would provide the greatest benefit as this would encompass sediment and discharge from the entire watershed. The results of the prioritization process are presented in Tables 5 through 8. The finally selected Implementation Reach is shown in Implementation Reach, Relative Surface Model, Figure 10 and Sheet 3.5 in Appendix G.

4.11. Conclusions of Preliminary Watershed-scale Assessment

Based on our watershed-scale assessment we conclude the following:

- No single source or sources of large scale sediment production were observed during our assessment. Primary sediment inputs appear to be relatively uniform across the watershed. Although sediment is generated from the mass-wasting processes noted in the Sediment Production and Conveyance Section 4.4.2, the large landslides mapped in the watershed are older slides mapped within the basalt unit, and thus are not significant contributors of sediment. The smaller landslides appear to occur within the soils or loess overlying the basalt, and are not considered significant contributors of sediment, unless they are located immediately adjacent to a drainage course.

- Excluding anthropogenic influences, it is our opinion that given the right conditions the channel is capable of migrating across the entire valley floors of the middle to lower reaches of the North, South, Wolf and Robinson Forks. More detailed, reach-scale CMZ analysis of specific areas of interest might refine the maximum migration boundary in such areas.

- Since the late 1800's the watershed has been developed as a result of agriculture, logging and infrastructure. Federally authorized levees, public and private dikes and revetments, and county roads and bridges have caused constriction and channelizing of the main stem and tributary forks. Further influencing channel behavior.

- The effects of bridges, such as the Highway 12 Bridge may likely contribute to sediment conveyance problems. However, site specific hydraulic and sediment transport capacity analysis is necessary to define the specific bridges effects on sedimentation.

- Based on the results of our Implementation Reach prioritization process, the selected Reach is located between RM TR 54.5, RM NF 1.1 and RM SF .04.

5.0 IMPLEMENTATION REACH ASSESSMENT

5.1. General

In addition to watershed-scale processes, discussed above, we evaluated and characterized geomorphic processes in the Implementation Reach. Principal Implementation Reach processes include flow dynamics, sediment supply and delivery, sediment transport capacity, and erosion and deposition within the channel. These characteristics are discussed in the following sections.
5.2. Stream Reconnaissance

GeoEngineers conducted a stream reconnaissance of the Implementation Reach. Our reconnaissance included detailed mapping of geology, geomorphology, and channel characteristics. Stream conditions documented included the presence of large woody debris, grade controls and bank stabilization structures. Streambed sediments were analyzed using Wolman pebble counts, bulk sample collection from gravel bars for laboratory testing, and a scaled photo log of gravel bar sediment. These data were used in the sediment transport capacity analysis and channel designs to promote a geomorphically stable channel. The adjacent floodplain areas were evaluated for relict channels, side channels, limits of the high flow corridor, and other areas with potential reconnection to the main stem channel. Federally authorized and non-authorized levees were documented and evaluated for setback potential. The reconnaissance provided necessary background information to develop conceptual alternatives that meet the project goals and objectives. The location and photographs of river features documented during our reconnaissance are presented in Appendix A.

5.2.1. Geology/Soils

5.2.1.1. SITE GEOLOGY

Bedrock within the Implementation Reach consists of the Frenchman Springs (Map Unit Mv[wfs]) and Grande Ronde basalt (Map Unit Mv[gN2]) of the CRBG. The rock consists of black to gray, weathered to competent fine-grained basalt. Basalt is exposed along the right bank of the North Fork between approximately RM NF 0.1 and RM NF 0.2. Over the majority of the valley bottom, the basalt is overlain by recent alluvium deposited by the Touchet River. The alluvium consists of a mixture of silt, sand, gravel, cobbles and boulders. Lower and higher terraces are present southwest of the main stem and South Fork confluence. The height of the lower terrace surface varies from 6 to 8 feet above the floodplain and the higher terrace surface varies from 12 to 18 feet above the floodplain. The higher surface includes a 1 to 2-foot-thick developed soil horizon, over 1 to 4 feet of loess overlying the alluvium, composed of erodible silty gravel and cobbles with sand. On the ridge slopes, adjacent to the river valley, the basalt is blanketed with loess. Geologic units mapped in the vicinity of the Implementation Reach are presented on Implementation Reach Geology Map and Sediment Sample Locations, Figure 11.

5.2.1.2. SITE SOILS

Soil units within the Implementation Reach are mapped by United States Department of Agriculture Natural Resource Conservation Service (NRCS) as: Riverwash (Map unit Rn); Patit Creek silt loam, 0 to 3 percent slopes (Map Unit PkA); Patit Creek gravelly silt loam, 0 to 3 percent slopes (Map Unit PIA); Patit Creek cobbly silt loam, 0 to 3 percent slopes (Map Unit PoA); Hermiston silt loam, 0 to 3 percent slopes (Map Unit HmA) and Athena silt loam, 8 to 25 percent slopes (Map Unit AtD).

The Rn unit is described as consisting of unsorted sand and gravel and is primarily mapped in the active river floodplain as show on the Implementation Reach Soils Map, Figure 12.

The Patit Creek Soil Series (PkA, PIA and PoA) consists of deep, well-drained soils formed in recent alluvium on bottomlands along streams at an elevation of 1,200 to 2,800 feet. The soils formed in alluvium derived mainly from loess, mixed with basaltic material. In general, the PIA and PoA units are mapped adjacent to the active floodplain. The PkA unit is mapped on the lower terrace surfaces.
The Hermiston series consists of deep, well-drained soils that formed in silty alluvium on stream bottoms and on terraces. The soil formed in alluvium from silty loess and ash. The HmA unit is mapped on the higher terraces surface southwest of the North and South Forks confluence.

The Athena series consists of deep and very deep well-drained soils that formed in loess mixed with volcanic ash on canyon sides, hills and plateaus. The AtD unit is mapped on the east canyon hillside above the North Fork Touchet River and generally upslope of North Touchet Road.

In general, the description of geologic and soil units within the Implementation Reach is consistent with our field observations.

5.2.2. Geomorphology

In general the geomorphic character of the Touchet River, within the Implementation Reach, can be summarized as moderately sinuous, single-thread, partially confined channel with low gradient, and limited geomorphic complexity and variability. The Implementation Reach was divided into five segments based on their dominant characteristics. Specific geomorphic parameters are outlined in Table 9, Existing Geomorphic Parameters, for the North Fork Touchet, South Fork Touchet and main stem Touchet River.

The North Fork Touchet River, from Baileysburg Bridge downstream to the South Fork Touchet Road Bridge, is a minimally entrenched channel with an accessible floodplain. The main channel resides within a high flow corridor that includes smaller side channels within the floodplain. Some of these channels have been disconnected from the main stem by small discontinuous push-up dikes. This reach is predominately a transport reach with stream bed material sizes in the range of coarse gravels to small cobbles.

The North Fork Touchet River, downstream of the South Fork Touchet River Road Bridge to approximately 300 feet upstream of its confluence with the South Fork Touchet River, is a moderately entrenched channel with limited floodplain connection. Confinement has caused some incision within this reach, reducing floodplain and side channel connectivity as well as creating a slightly armored channel bed. Several channel improvement measures are been constructed within this reach presumably to reduce bank and streambed erosion. These measures include rootwads placed in the channel banks and rock-boulder weirs placed downstream of the bridge.

The South Fork Touchet River, from the upstream end of the Implementation Reach downstream to approximately 300 feet above the confluence with the North Fork Touchet River, is a minimally entrenched channel with an accessible floodplain. This reach is a transport reach with bed material sizes in the range of coarse gravels to small cobbles. Small, discontinuous private revetments are located along channel banks to control bank recession into agricultural fields.

All three channels within 300 feet of the confluence of the North Fork Touchet and South Fork Touchet are influenced by the cumulative effects of each channel's flow and sediment discharge. The sediment regime is generally depositional, as evidenced by the presence of small bars. The main stem channel is confined along the right bank by a federally authorized levee that disconnects the river from a portion of the historic floodplain. The channel planform maintains a single-thread configuration but there is an increase in the number of side channels, predominantly
along the toe of the levee, where helical flow against the levee has scoured out small channels parallel to the levee. The stream bed material sizes range from coarse gravels to small cobbles.

From 300 feet downstream of the confluence to the downstream end of the Implementation Reach, the main stem of the Touchet River is confined along the entire right bank by the federally authorized levee. The channel is single-thread with multiple high flow and side channels located within the riparian zone along the left side of the flood corridor. The channel becomes confined by the right bank levee and low and high terraces discussed in the Site Geology, Section 5.2.1.1. Severe bank erosion is occurring where the existing channel is eroding into the terraces. The right bank confinement has led to minimal incision and created a transport dominated reach.

TABLE 9. EXISTING GEOMORPHIC PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>North Fork Touchet</th>
<th>South Fork Touchet</th>
<th>Main stem Touchet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bankfull Width (ft)</td>
<td>60</td>
<td>58</td>
<td>63</td>
</tr>
<tr>
<td>Bankfull Depth (ft)</td>
<td>3.2</td>
<td>2.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Width Depth Ratio (ft)</td>
<td>18.6</td>
<td>19.7</td>
<td>18.0</td>
</tr>
<tr>
<td>Flood Prone Width</td>
<td>103/225</td>
<td>220</td>
<td>195</td>
</tr>
<tr>
<td>Flood Prone Depth</td>
<td>6.4</td>
<td>5.8</td>
<td>7.0</td>
</tr>
<tr>
<td>Entrenchment Ratio (ft/ft)</td>
<td>1.7/3.8</td>
<td>3.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Sinuosity (ft/ft)</td>
<td>1.19</td>
<td>1.15</td>
<td>1.08</td>
</tr>
<tr>
<td>Slope (ft/ft)</td>
<td>0.0106</td>
<td>0.0110</td>
<td>0.0086</td>
</tr>
<tr>
<td>D_{50} (material)</td>
<td>Gravel/Cobble</td>
<td>Gravel</td>
<td>Gravel</td>
</tr>
<tr>
<td>Rosgen Stream Type</td>
<td>B3-B4/C3-C4</td>
<td>C4</td>
<td>C4</td>
</tr>
</tbody>
</table>

5.3. Streambed Gravel Sampling/Analysis

Two streambed sampling methods were utilized to aid in the estimation of bed material for channel classification, habitat type, and potential sediment transport analyses through the Implementation Reach. Bulk samples were obtained on the downstream third of the depositional bars, to better understand potential sizes of bed load material. Wolman pebble counts were conducted through the active stream channel (within bankfull elevations) to estimate the distribution and size of surface streambed materials. Comparing a bulk sample to a Wolman sample should also show the potential development of a surface armor layer. Photographs of streambed sediments were taken on gravel bars where Wolman pebble counts or bulk samples of the bed were not obtained to augment the sediment size data.

5.3.1. Streambed Bulk Sediment Sample Analysis

Six bulk samples were obtained from various locations throughout the Implementation Reach. The majority of these samples were obtained in or adjacent to the ordinary high channel. One sample was obtained from the surface of the floodplain along the South Fork Touchet to evaluate the amount of finer-sized soil particles in the alluvium. The six samples were analyzed in the laboratory to determine site specific gradations. These data, along with the pebble counts, were used to estimate representative gradations for the respective channels through the Implementation Reach. The results of the laboratory gain-size analysis are presented in Appendix B, Figures B-1 through
B-3. Grain sizes, in inches, at specific gradation points are shown in Bulk Sediment Sample Gradation Summary, Table 10.

TABLE 10. BULK SEDIMENT SAMPLE GRADATION SUMMARY

<table>
<thead>
<tr>
<th>Sample</th>
<th>River</th>
<th>Location1</th>
<th>D152</th>
<th>D352</th>
<th>D502</th>
<th>D852</th>
<th>D952</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS-1</td>
<td>S. Fork</td>
<td>0.25</td>
<td>0.11</td>
<td>0.023</td>
<td>0.04</td>
<td>1.7</td>
<td>2.4</td>
</tr>
<tr>
<td>BS-2</td>
<td>S. Fork</td>
<td>0.1</td>
<td>0.75</td>
<td>1.1</td>
<td>1.3</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>BS-3</td>
<td>N. Fork</td>
<td>0.85</td>
<td>0.28</td>
<td>1.2</td>
<td>1.7</td>
<td>4.0</td>
<td>4.1</td>
</tr>
<tr>
<td>BS-4</td>
<td>N. Fork</td>
<td>0.85</td>
<td>0.26</td>
<td>1.1</td>
<td>1.5</td>
<td>3.6</td>
<td>4.1</td>
</tr>
<tr>
<td>BS-5</td>
<td>N. Fork</td>
<td>0.53</td>
<td>0.67</td>
<td>1.3</td>
<td>1.6</td>
<td>4.0</td>
<td>4.1</td>
</tr>
<tr>
<td>BS-6</td>
<td>Main</td>
<td>0.9</td>
<td>0.22</td>
<td>1.0</td>
<td>1.3</td>
<td>2.4</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Notes:
1. Location refers to the river distance in miles from the mouth of each fork.
2. Diameter size is in inches.

The samples from the channel and floodplain were used to verify and help calibrate the existing conditions hydraulic model, by looking at model shear stress and flow velocities and relating these to existing sediment sizes being retained in the channel. The gradations also were used as direct input into the sediment module within HEC-RAS to complete a sediment analysis within the Implementation Reach. Please refer to the Hydraulic Model and Sediment Transport Capacity Analysis sections of this report for further discussion.

5.3.2 Wolman Pebble Count

Twelve pebble counts were conducted within the Implementation Reach in general accordance with the Wolman Pebble Count Procedure (Wolman 1954) on November 10 through 12, 2010. Three of the counts were conducted on the South Fork, two on the Main Stem downstream of the North and South Forks confluence and seven on the North Fork. The approximate locations of the pebble counts are shown in Figure 11.

The pebble count data was summarized to estimate the approximate particle sizes of each sample. The estimated particle sizes, in inches, at various gradation points are shown in the Wolman Pebble Count Summary, Table 10. The results of the pebble counts indicate that, on average, the North Fork Touchet has a D50 of approximately 2.9 inches, the South Fork a D50 of approximately 2.3 inches and the Main Touchet a D50 of approximately 2.75 inches. The results of the Wolman pebble counts are graphically presented in Appendix B, Figures B-4 through B-15.

TABLE 11. WOLMAN PEBBLE COUNT SUMMARY

<table>
<thead>
<tr>
<th>Sample</th>
<th>River</th>
<th>Location1</th>
<th>D152</th>
<th>D352</th>
<th>D502</th>
<th>D852</th>
<th>D952</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Stem</td>
<td>0.6</td>
<td>1.4</td>
<td>2.4</td>
<td>3.3</td>
<td>5.5</td>
<td>7.1</td>
</tr>
<tr>
<td>2</td>
<td>Main Stem</td>
<td>0.8</td>
<td>1.2</td>
<td>1.9</td>
<td>2.3</td>
<td>4.6</td>
<td>7.3</td>
</tr>
<tr>
<td>3</td>
<td>N. Fork</td>
<td>0.1</td>
<td>1.6</td>
<td>2.5</td>
<td>3.2</td>
<td>5.5</td>
<td>7.3</td>
</tr>
<tr>
<td>4</td>
<td>N. Fork</td>
<td>0.2</td>
<td>1.2</td>
<td>1.9</td>
<td>2.6</td>
<td>4.7</td>
<td>7.9</td>
</tr>
<tr>
<td>5</td>
<td>N. Fork</td>
<td>0.3</td>
<td>1.5</td>
<td>2.4</td>
<td>3.3</td>
<td>6.1</td>
<td>8.8</td>
</tr>
<tr>
<td>Sample</td>
<td>River</td>
<td>Location 1</td>
<td>D15 2</td>
<td>D35 2</td>
<td>D50 2</td>
<td>D85 2</td>
<td>D95 2</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>6</td>
<td>N. Fork</td>
<td>0.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.7</td>
<td>4.6</td>
<td>6.4</td>
</tr>
<tr>
<td>7</td>
<td>N. Fork</td>
<td>0.6</td>
<td>1.3</td>
<td>2.1</td>
<td>2.8</td>
<td>4.8</td>
<td>6.6</td>
</tr>
<tr>
<td>8</td>
<td>N. Fork</td>
<td>0.9</td>
<td>1.5</td>
<td>2.7</td>
<td>3.3</td>
<td>6.1</td>
<td>7.9</td>
</tr>
<tr>
<td>9</td>
<td>N. Fork</td>
<td>1.1</td>
<td>1.3</td>
<td>2.0</td>
<td>2.7</td>
<td>6.6</td>
<td>10.3</td>
</tr>
<tr>
<td>10</td>
<td>S. Fork</td>
<td>0.2</td>
<td>1.1</td>
<td>1.8</td>
<td>2.2</td>
<td>4.2</td>
<td>5.8</td>
</tr>
<tr>
<td>11</td>
<td>S. Fork</td>
<td>0.3</td>
<td>1.1</td>
<td>2.0</td>
<td>2.5</td>
<td>4.2</td>
<td>6.4</td>
</tr>
<tr>
<td>12</td>
<td>S. Fork</td>
<td>0.8</td>
<td>1.1</td>
<td>1.6</td>
<td>2.2</td>
<td>4.4</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Notes:
1. Location refers to the river distance in miles from the mouth of each fork.
2. Diameter size is in inches.

5.4. Hydrologic Analysis

A hydrologic analysis was completed for the Implementation Reach to increase the level of precision in estimated annual peak, monthly average, and average daily exceedance flows. For the purposes of our analysis, we divided watershed into the following sub-basins: 1) North Fork, which included the Wolf and Robinson Forks; South Fork; and main stem. Flows were estimated from three specific points located on the North and South Forks immediately upstream of their confluence and the main stem Touchet immediately upstream of Patit Creek.

Three historic USGS gauges along the Touchet River were used in this analysis. The USGS Gauge 14017500 located at Touchet, Washington was used. This gauge has a historic record of 1941-1955. USGS Gauge 14017000, located just downstream of Bolles, Washington, was used and this historic record extends from 1925-1989. The only historic gauge within the project watershed was USGS Gauge 14016500 located on the North Fork Touchet River, just upstream of the South Fork Touchet Road. This historic gauge has a record from 1941-1968. The Washington Department of Ecology (DOE) is currently operating a stream gauge on the North Fork Touchet River at the South Fork Touchet Road Bridge over the North Fork. This DOE gauge (Gauge DOE-32E050) has a record from 2003-2010.

5.4.1. Peak Flows

To estimate annual instantaneous peak flows for the Implementation Reach, GeoEngineers utilized four methods for initial comparison. The first method was to complete a regression analysis on the historical gauge (USGS Gauge 14016500) within the Implementation Reach. This gauge was statistically analyzed using a Log-Pearson Type III (LP3) Distribution to estimate flood recurrence intervals and discharges. This gauge was evaluated with its original historical record. It was also evaluated with an artificially extended record using the downstream USGS gauges. Finally, it was analyzed with its historical gauge data along with the historic data from the DOE gauge. The USGS StreamStats program was also utilized for the fourth and final method as well as to validate our assumptions used in the watershed-scale assessment.

All three of these historical records were statistically analyzed using the USGS PeakFQ program to estimate flow discharges at various exceedance probabilities or flood return intervals (USGS, 2009). The USGS PeakFQ program utilizes the Log Pearson Type III statistical distribution
as described in Bulletin 178 from the USGS to estimate the discharges at selected exceedance probabilities (USGS, 1982).

Comparing these four flood frequency distributions it became evident that StreamStats was consistently larger than the other three methods while the two artificially extended records resulted in smaller discharges but all fell within the 95% confidence intervals of each other. The flood frequency distribution from the original historic record from 1941-1968 was ultimately used to develop relationships for the North Fork Touchet at the confluence, the South Fork Touchet at the confluence and the main stem Touchet above Patit Creek up to the confluence of the North and South Fork.

Flood flow frequencies for these three locations were then estimated using three different methods. The USGS StreamStats program was used to estimate discharges. Based on the report by Knowles and Sumiok (2001), there was a regression equation used to estimate discharges at ungauged sites near gauged sites on the same stream. The limiting factor for this equation is that the ungauged site has to be within 50 and 150 percent of the drainage area of the gauged site (Knowles and Sumiok 2001). Table 12, Watershed Sub-Basin Areas, shows that extrapolating discharges for the South Fork and main stem pushes the envelope of the effective limits of this regression equation.

TABLE 12. WATERSHED SUB-BASIN AREAS

<table>
<thead>
<tr>
<th>Site Location</th>
<th>Basin Area (mi²)</th>
<th>% Area of USGS Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS Gauge 14016500</td>
<td>107</td>
<td>100%</td>
</tr>
<tr>
<td>North Fork Touchet</td>
<td>115</td>
<td>107%</td>
</tr>
<tr>
<td>South Fork Touchet</td>
<td>43.6</td>
<td>41%</td>
</tr>
<tr>
<td>Main stem Touchet</td>
<td>163</td>
<td>152%</td>
</tr>
</tbody>
</table>

A third method to estimate the flood flow frequencies at these locations consisted of developing a regression equation between the estimated discharges from the USGS StreamStats program and the discharges from the LP3 distribution, ultimately used at the North Fork gauging site. The USGS StreamStats discharges were used since the StreamStats program is easily reproducible and is a consistent method valid at all three locations. This regression equation was then applied to each site’s USGS StreamStats flows to adjust them to better represent the historic gauge data from the North Fork Touchet Gauge. Again when comparing the three methods of estimating the flood frequency discharges, StreamStats was the most conservative while the area regression equation was the least conservative. The regression equation developed from the historic data and StreamStats was ultimately used in our analysis because it was slightly more conservative than the regression equation recommended by Knowles and Sumiok (2001). A summary of all of these methods can be found in Appendix E. Table 13, Discharge Summary Table, displays the flood frequency return intervals and discharges utilized for each reach within the Implementation Reach based on the StreamStats method.
TABLE 13. DISCHARGE SUMMARY TABLE (DISCHARGES IN CFS)

<table>
<thead>
<tr>
<th>Flow Reach</th>
<th>Flood Frequency (Years)</th>
<th>1.5</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main stem Touchet</td>
<td>900</td>
<td>1118</td>
<td>1940</td>
<td>2654</td>
<td>3724</td>
<td>4679</td>
<td>5766</td>
<td></td>
</tr>
<tr>
<td>North Fork Touchet</td>
<td>700</td>
<td>882</td>
<td>1570</td>
<td>2113</td>
<td>2981</td>
<td>3762</td>
<td>4640</td>
<td></td>
</tr>
<tr>
<td>South Fork Touchet</td>
<td>450</td>
<td>564</td>
<td>945</td>
<td>1292</td>
<td>1801</td>
<td>2263</td>
<td>2781</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. The main stem Touchet discharges do not represent the sum of the North and South Forks because flood events in each fork statistically do not occur simultaneously.

The peak discharges for selected return intervals were also compared to the discharges used in the original the Federal Emergency Management Agency’s (FEMA) Flood Insurance Study for Columbia County, Washington and Incorporated Areas, date July 19, 2000. These discharges are compared in Table 14, Flood Discharge Comparison, below. FEMA flows were usually slightly higher than those estimated in the regression analysis especially for the main stem Touchet. In subsequent phases an analysis should be conducted to determine the probability of a significant flood occurring on both the South Fork and North Fork at the same time, therefore, increasing the potential peak discharges in the main stem.

TABLE 14. FLOOD DISCHARGE COMPARISON (CFS).

<table>
<thead>
<tr>
<th>Method</th>
<th>Return Interval (Years)</th>
<th>North Fork Touchet</th>
<th>South Fork Touchet</th>
<th>Main stem Touchet</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMA</td>
<td>10</td>
<td>2570</td>
<td>1390</td>
<td>3270</td>
</tr>
<tr>
<td>GeoEngineers</td>
<td>10</td>
<td>2113</td>
<td>1292</td>
<td>2654</td>
</tr>
<tr>
<td>FEMA</td>
<td>50</td>
<td>4200</td>
<td>2290</td>
<td>5380</td>
</tr>
<tr>
<td>GeoEngineers</td>
<td>50</td>
<td>3762</td>
<td>2263</td>
<td>4679</td>
</tr>
<tr>
<td>FEMA</td>
<td>100</td>
<td>5030</td>
<td>2750</td>
<td>6470</td>
</tr>
<tr>
<td>GeoEngineers</td>
<td>100</td>
<td>4640</td>
<td>2781</td>
<td>5766</td>
</tr>
<tr>
<td>FEMA</td>
<td>500</td>
<td>7360</td>
<td>4040</td>
<td>9520</td>
</tr>
<tr>
<td>GeoEngineers</td>
<td>500</td>
<td>7256</td>
<td>4308</td>
<td>8973</td>
</tr>
</tbody>
</table>

5.4.2. Average Monthly Flows

Average monthly flows were obtained at the USGS historic gauging sites for the period of record along with the historic data from the DOE gauge. The DOE gauge’s record was modified to account for the difference in area between the North Fork gauge and the DOE gauge. These data were used to estimate average monthly discharge values for the downstream end of the three separate channels, within the implementation Reach, using the regression equation recommended by Knowles and Sumik (2001). The monthly discharges for each reach can be seen in Table 15, Average Monthly Discharges. It should be noted that since average monthly flows occur simultaneously we assumed the combination of the North Fork and South Fork discharges would accumulate to the discharge in the main stem Touchet for each month as opposed to applying the regression equation to the main stem during instantaneous peak flows that could be independent of each other.
TABLE 15. AVERAGE MONTHLY DISCHARGES (CFS).

<table>
<thead>
<tr>
<th>Month</th>
<th>North Fork Touchet</th>
<th>South Fork Touchet</th>
<th>Main stem Touchet</th>
</tr>
</thead>
<tbody>
<tr>
<td>October</td>
<td>52</td>
<td>29</td>
<td>81</td>
</tr>
<tr>
<td>November</td>
<td>82</td>
<td>47</td>
<td>129</td>
</tr>
<tr>
<td>December</td>
<td>137</td>
<td>77</td>
<td>215</td>
</tr>
<tr>
<td>January</td>
<td>147</td>
<td>83</td>
<td>230</td>
</tr>
<tr>
<td>February</td>
<td>184</td>
<td>104</td>
<td>287</td>
</tr>
<tr>
<td>March</td>
<td>196</td>
<td>111</td>
<td>307</td>
</tr>
<tr>
<td>April</td>
<td>234</td>
<td>132</td>
<td>366</td>
</tr>
<tr>
<td>May</td>
<td>201</td>
<td>113</td>
<td>315</td>
</tr>
<tr>
<td>June</td>
<td>111</td>
<td>63</td>
<td>174</td>
</tr>
<tr>
<td>July</td>
<td>55</td>
<td>31</td>
<td>86</td>
</tr>
<tr>
<td>August</td>
<td>45</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>September</td>
<td>45</td>
<td>25</td>
<td>70</td>
</tr>
</tbody>
</table>

5.4.3. Average Daily Exceedance Flows

Average daily flows were analyzed for the historic record on the North Fork Touchet. The area regression equation was applied to these flows to estimate average daily flows for the South Fork and North Fork Touchet. Like the average monthly flows, the average daily flows from the South and North Fork’s were totaled to approximate the average daily discharge in the main stem. The average daily flow hydrograph for each reach can be seen in Appendix E.

A probability of exceedance of average day discharges was analyzed to estimate low-flow discharges for fish passage. Low-flow passage is usually estimated as the five percent flow or flow that is exceeded 95 percent of the time. The 95 percent exceedance low-flows were 44, 25, and 68 for the North Fork, South Fork and main stem Touchet, respectively.

Estimated historic daily low-flows for the given historic data record (1941-1968 and 2003-2010) for each reach was also analyzed. The extreme low-flow discharge measured for one day at the historic gauge site (USGS Gauge 14016500) was 20 cfs recorded on January 20, 1960 and was used to estimate extreme low-flows for each reach. The historic low daily average discharge for each reach is 21, 12, and 33 for the North Fork, South Fork and main stem Touchet, respectively.

5.5. Hydraulic Model

5.5.1. Hydraulic Computer Model

GeoEngineers applied the US Army Corps of Engineers (USACE) Hydrologic Engineering Center – River Analysis System (HEC-RAS) Version 4.1.0 to estimate water surface elevations and to delineate flood extents through the project area for various discharges, including the 100-year base flood (USACE, 2010). HEC-RAS modeling software is the industry standard one-dimensional model for most flood analyses and is commonly used to delineate regulatory floodplains, floodways, and estimate base flood elevations. This hydraulic model was also utilized to run a
sediment transport model to estimate sediment transport capacity within the Implementation Reach.

5.5.2. Historic Hydraulic Computer Model

FEMA had historically completed a detailed hydraulic model through the Implementation Reach. A data request was submitted to FEMA and this historic model was obtained. This model was originally created in HEC-2. The HEC-2 input files were converted over to HEC-RAS input files and the model was run in HEC-RAS. This model is necessary background data with any request that will be submitted to FEMA. Ultimately this model will be used during the design process and resubmitted to FEMA with the Conditional Letter of Map Revision (CLORMR) application prior to construction and ultimately the Letter of Map Revision (LOMR) application after construction.

5.5.3. Hydraulic Model Development

5.5.3.1. CROSS SECTIONS

Cross sections were developed for the implementation area by using LiDAR flown by Watershed Sciences, Inc. along with surveyed bathymetry within the channels, surveyed by White Shield, Inc. November 20 through 24, 2010. These sections were located across the Implementation Reaches channel and floodplain, approximately perpendicular to the anticipated direction of flow. The cross sections used in the hydraulic model are displayed on Sheet 3.4 of Appendix G.

The approximate bridge geometries were included in the development of the model to account for any potential backwater effects or overtopping effects from the three bridges located within the Implementation Reach. Bridge widths were measured during the bathymetric survey, as was deck height, and pier locations and dimensions.

Levees and ineffective flow areas were placed in accordance with FEMA certified levees, field observations, and professional judgment. This included the two levees along the right bank, one short levee immediately upstream of the South Fork Touchet Road Bridge, over the North Fork Touchet River, and the other levee downstream along the right bank adjacent to the North Fork Touchet all the way downstream to the end of the Implementation Reach. Channel and floodplain roughness values were approximated with a Manning’s n-value and were based off of standard hydraulic reference manuals, field exploration, photos and engineering experience.

5.5.3.2. ANALYZED DISCHARGES

The steady state model was run for a varied range of discharges including the 1.5-, 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges. The base flood extents were modeled using the 100-year peak discharge values obtained in this study as opposed to those currently approved by FEMA.

The quazi-steady state flows used in the sediment transport module of HEC-RAS were based off of the 2-year discharge values. These discharges were applied to an actual hydrograph from the North Fork Touchet River stream gauging site currently maintained by the Washington Department of Ecology. The hydrograph was approximately 30 days long and consisted of average daily flows. This hydrograph was normalized and scaled for each respective fork of the Implementation Reach. This was the only hydrograph and discharges analyzed in the sediment transport module.
5.5.3.3. **BOUNDARY CONDITIONS**

The boundary condition used for the starting water surface at the downstream extent of the analyzed river reach for the steady state analysis was normal depth. A normal depth starting water surface boundary condition requires the input of the average gradient of the channel bottom for the entire modeled reach. The project reach gradient used for this boundary condition was 0.7 percent. Originally the estimated FEMA base flood elevation at the downstream end of the hydraulic model was used as a starting boundary condition for the 100-year base flood, but starting water surface elevations defaulted to critical depth, so normal depth was used for its conservative elevation estimate.

Discharge hydrographs were used as input boundary conditions for the North fork and South fork reaches during the sediment transport module run. As in the steady state module, normal depth was used for the downstream boundary condition of the main stem Touchet River. Sediment boundary conditions also had to be estimated at the upstream and downstream cross sections of the hydraulic model. Since no existing sediment data was available we assumed that the upstream and downstream most cross sections would simply transport all material through them, allowing neither deposition nor scour.

All models were run in a subcritical flow regime. Subcritical flow regimes are developed by a downstream control and propagate upstream. In this manner water surface elevations are calculated from the downstream project limits upstream. Subcritical flows produce greater flow depths than supercritical flow regimes and are more conservative in relation to flood elevations and extents.

5.5.4. **Hydraulic Model Results**

Steady state model results were obtained for the 1.5-, 2-, 5-, 25-, 50-, and 100-year recurrence interval discharges. These results contain certain hydraulic characteristics used to describe what is occurring at each individual cross section. These parameters include flow depth, velocity, shear, and stream power. Parameters obtained during the more frequently occurring flood intervals (1.5- and 2-year), which tend to be the channel forming flows, will be used in future channel design.

Water surface elevations were also obtained for the array of channel discharges run through the hydraulic model. The computed elevation to which floodwater is anticipated to rise during the 100-year base flood is known as Base Flood Elevations (BFEs). The BFEs for both the FEMA floodplain and the existing conditions floodplain are illustrated in Table 16, Base Flood Elevations. FEMA BFEs were originally recorded in the National Geographic Vertical Datum of 1929 (NGVD 29) and were adjusted to the North American Vertical Datum of 1988 (NAVD 88) to match the results of our model. An average conversion factor of +3.182 was used to convert from the NGVD 29 datum to the NAVD 88 datum. These elevations will be used in validating flood extents, estimating available levee freeboard, and in future levee designs.
TABLE 16. BASE FLOOD ELEVATIONS

<table>
<thead>
<tr>
<th>River Reach</th>
<th>FEMA Cross Section</th>
<th>FEMA (ft)</th>
<th>Existing (ft)</th>
<th>Difference (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touchet</td>
<td>AH</td>
<td>1657.1</td>
<td>1658.6</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>AI</td>
<td>1663.5</td>
<td>1662.7</td>
<td>-0.8</td>
</tr>
<tr>
<td></td>
<td>AJ</td>
<td>1669.9</td>
<td>1669.7</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>AK</td>
<td>1673.8</td>
<td>1674.0</td>
<td>0.2</td>
</tr>
<tr>
<td>North Fork</td>
<td>A</td>
<td>1680.8</td>
<td>1681.5</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1690.1</td>
<td>1691.0</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1702.3</td>
<td>1700.7</td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1706.8</td>
<td>1707.1</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>1712.0</td>
<td>1712.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>1721.2</td>
<td>1722.78</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>1729.3</td>
<td>1730.2</td>
<td>0.9</td>
</tr>
<tr>
<td>South Fork</td>
<td>A</td>
<td>1680.7</td>
<td>1681.5</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1690.8</td>
<td>1690.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Flood extents were estimated based upon water surface elevations at each cross section. Extents were analyzed for the 1.5-, 2-, 5-, 25-, 50- and 100-year flood conditions. A relative flood surface model of the detailed flood study was created to show approximate inundation depths and potential high-flow channels. This relative surface model can be seen on Figure 10. The 100-year base flood extents can be seen on Sheet 3.4 in Appendix G. The other inundation extents are available within the GIS database developed as part of this project. We assumed the federally authorized levees were in a functioning order and able to withhold the floods.

5.6. Sediment Transport Capacity Analysis

Discharges for several recurrence interval flows were routed through the hydraulic model to analyze potential sediment transport and transport capacity along with an actual 1.5-year hydrograph. The selected flows include the 1.5 and 2 year storm discharges (considered bank full in different parts of the reach), as well as the 10, 25, 50, 100 and 500 year storm flows. The Meyer-Peter Müller bedload transport equation was used in the sediment transport element of the HEC-RAS model. The model output included channel velocities and total boundary shear stress (T) for the selected discharges and at various time steps throughout the hydrograph. Model output was used in the sediment transport element of the HEC-RAS model to estimate the ability of the selected flows to 1) maintain the transportation of various grain sizes comprising the bedload; and 2) mobilize and entrain sediment comprising the streambed.

The results of the transport capacity model runs for the North Fork and South Fork channels are provided in Sediment Transport Capacity Results, Table 17, located behind the Tables Index Tab. The results are given for each HEC-RAS cross section, and for each selected recurrence interval. The cross section locations are shown in Appendix G, sheet 3.4.
Results for the North Fork channel indicate that channel velocities and boundary shear stresses generated by flows at most cross sections upstream of cross section (XS) 3350 (bridge crossing) are sufficient to maintain the transport of bedload, but incapable of eroding the stream. Results indicate only marginal capacity of flows to mobilize the stream bed (sporadically) from the 1.5 to the 100 year storm discharges. Downstream of XC 3350 model results indicate marginal to full mobilization and transport takes place during events equal to or greater than the 2 to 5 year event (bankfull condition). These results indicate the North Fork is primarily a transport reach. This was validated through the 2-year hydrograph.

Results for the South Fork channel indicate that channel velocities and boundary shear stresses generated by flows at all cross sections upstream of XS 2780 are not sufficient of maintaining bedload transport, and incapable of mobilizing sediment from the bed. This could be likely caused by the hydraulic controls of the private bridge crossing the South Fork at this location. Downstream from XS 2780, model results indicate marginal to full mobilization of the bed between at about bankfull conditions, and fully maintained transport of bedload through the reach to the confluence. These results indicate that the area above the XS 2780 functions largely as a zone of deposition, and the area downstream of the bridge is largely erosional. These results are consistent with the 2-year hydrograph results which show deposition upstream of the bridge and erosion downstream of the bridge.

Results for the Touchet main stem indicate that channel velocities and boundary shear stresses generated by flows at cross section XS 2071 are incapable of mobilizing the bed, and insufficient to maintain transport of sediment sizes greater than small gravel. Modeled transport conditions downstream of XS 2071 indicate the bed is marginally mobilized at the 1.5 and 2 year flows, and fully mobilized at 10 year and greater flows. These results suggest this area is a primarily a depositional zone, which is consistent with field observations indicating that sediment deposition is possibly aggrading the channel floor. Modeled conditions upstream of XS 2071 indicate the bed is predominately stable during the 1.5- to 2-year and material is falling out of transport creating a depositional zone. However, during the 10- to 100-year discharges the bed material is mobilized and transported downstream of the Implementation Reach. This deposition occurring near the confluence with a moderately stable bed near the downstream end of the Implementation Reach was also verified throughout the 2-year hydrograph.

5.7. Channel Migration Potential Evaluation

5.7.1. Implementation Reach Approach

Our approach to delineating the probable extent of channel migration within the Implementation Reach expanded on the results of our qualitative watershed-scale evaluation, by adding a quantitative component. Our quantitative approach included the following evaluations and assumptions:

- Evaluation of the watershed-scale geomorphic conditions discussed in Section 4.4 and summarized in Table 2 relative to the Implementation Reach.
- Review of georectified aerial photographs developed into the GIS database. A high flow corridor was digitized for the years 1964, 1978, 1996, 2006 and 2010. The high flow corridor for each year included the modern channel, flood plain, modern and historic abandoned and
relict channels. The high flow corridor traces were overlaid in GIS to develop the Historic Channel Migration Zone (HMZ).

- Using GIS, the maximum observed lateral channel movement was measured at several points over the aerial photo record and calculated as an average. The distances of movement via reoccupation of older channels were not considered in the measurements.
- Federally authorized publically maintained levees were considered barriers to migration.
- High, moderate and disconnected migration potential areas were delineated.

5.7.2. Channel Migration Potential Area Delineation

Three areas were delineated for the Implementation Reach channel migration potential evaluation. These included: 1) a high migration potential area (MPA); 2) a moderate MPA; and 3) a disconnected migration area (DMA). The Implementation Reach MPAs are presented on Figures 13a and 13b.

5.7.2.1. HIGH MIGRATION POTENTIAL AREA

The high MPA was defined as the HMZ. This area is considered the area with the highest potential for channel migration during a single storm event based on evidence of past channel occupation and relatively erosive alluvial soils.

5.7.2.2. MODERATE MIGRATION POTENTIAL AREA

Review of the time-series aerial photographs did not reveal significant steady migration of the main stem channel outside the high flow corridor. Rather, migration appears characterized by episodic movement of the main stem channel into previously abandoned channels or relatively rapid lateral migration within the highflow corridor. For this reason, calculating an average rate of migration was not deemed appropriate. As an alternative approach to defining the moderate MPA, we took the average maximum migration of 59 feet and applied a factor of 1.5. The result is a 90 foot-wide buffer, which was applied to the outside on each side of the high MPA. This area represents the moderate MPA.

5.7.2.3. DISCONNECTED MIGRATION AREAS

We assumed that the USACE levees (right bank levee in Dayton and the “Star” levee upstream of Dayton) will be maintained as erosion resistant flood control structures. For the purposes of this evaluation, these levees were considered as a barrier to channel migration. However, the areas behind the levees suggest past channel occupancy. Therefore, these areas were delineated as Disconnected Migration Area (DMAs).

5.7.3. CTUIR GIS CMZ Layer

We reviewed the CTUIR CMZ shapefile data relative to the Implementation Reach. As discussed above, GeoEngineers’ boundaries in the Implementation Reach were refined to include high and moderate MPAs and DMAs. The CTUIR did not make these boundary distinctions. As discussed in Section 4.9.3, it appears that the CTUIR data refines the migration zone based on the presence of structures that may resist erosion. GeoEngineers did not consider such features as boundaries to migration.
5.8. Channel Stability Analysis

The results of the reach scale geomorphic characterization, hydraulic and sediment transport capacity modeling and channel migration potential analyses were evaluated together to assess the general stability of the channel within the Implementation Reach. The lack of significant dynamic movement of most sections of the North and South Fork channels, and the prevalence of sediment transport through both channels suggests these channels are not in dynamic equilibrium. The disequilibrium and lack of dynamic behavior is due largely to channel confinement, which in turn has resulted in streambed erosion and channel incision.

The mainstem Touchet also appears to be out of equilibrium. In this area, the disequilibrium is the result of sediment deposition in the form of long-lived bars, resulting in aggradation of the channel floor. In unconfined rivers, the typical ‘stable’ channel response to aggradation is channel widening, and/or channel migration. However, the main stem Touchet channel in this reach is tightly confined by revetted levees that have effectively prevented bank erosion and channel migration. Consequently, the aggrading bars have had the effect of displacing the conveyance capacity of the channel and promoting more frequent episodes of flooding.

Alternative measures proposed for the Implementation Reach will improve the connectivity between the river channels and portions of the floodplain, thus enlarging the high flow corridor. This action alone will help restore some of the dynamic channel behavior previously lost to channel confinement. The introduction of in-channel structures will also recover dynamic behavior by diverting flow and creating small areas of deposition, which are important to achieving channel stability and balancing the volume of sediment entering and exiting the reach.

5.9. Conclusions of Implementation Reach Assessment

Based on our Implementation Reach assessment we conclude the following:

- Relevant processes in the Implementation Reach primarily include: lateral and vertical scour (bank erosion and downcutting) with localized depositional areas and overall transport of sediment through the reach.

- Active erosion into floodplain alluvium and historic terraces at the confluence of the North and South Forks and at the downstream end of the Implementation Reach, respectively, is a likely source of sediment into the levee floodway downstream of the Implementation Reach.

- Human activities associated with agriculture and rural development have resulted in the following limiting factors for habitat and flood reduction:
 - Channel confinement
 - Disconnected floodplain and side channels
 - Streambed and stream bank degradation
 - Reduction of LWD

- Primary Potential benefits from restoration within the Implementation Reach will be:
 - Reconnecting side channels with portions of the floodplain
 - Improve habitat
Increase riparian density and width
Increase channel complexity and habitat diversity by adding structure (LWD etc.)
Increase low-velocity habitat areas for juvenile rearing
Increase hyporheic exchange for increased base-flow and cooler water at low-flow
Increase and improve cover and migration corridors for fish and terrestrial wildlife
- Improve flood storage capacity

6.0 CONCEPTUAL ALTERNATIVES DEVELOPMENT

6.1. Overview of Alternatives Development

GeoEngineers prepared this alternatives development in collaboration with the City, LRTG and RTT. The following sequential process was followed throughout this assessment so practical enhancement alternatives could be developed and compared against one another with the intent of selecting a preferred conceptual alternative.

This process involves the identification of the project in terms of its goals and objectives. The project goals are relatively general and the project objectives are more specific. Each project objective was assigned a numerical weighting by the LRTG and RTT based on its relative level of importance. Note, the goals, objectives and numerical weighting of this alternatives assessment are similar but not the same as the goals and objectives for the watershed reach prioritization process, described previously.

Lists of geomorphically appropriate enhancement treatments, which focus on achieving the specific project objectives, were then developed. These treatments range from physical, on-the-ground improvements, to more passive land management practices. Project constraints, which constitute the practical limitations of the project, were also identified during this early stage of the project. These alternatives were only developed to a conceptual level of detail using similar assumptions and cost estimates to facilitate a reasonable side-by-side comparison. The alternative ultimately selected will require a more rigorous design effort.

The numerical rating system was then used to objectively identify a preferred enhancement alternative. A numerical rating of each alternative was calculated for each objective by multiplying the objective’s level of importance by the alternative’s level of effectiveness in achieving the objective. A benefit rating for each alternative was then calculated by summing the alternative’s rating for each objective. Because the more important objectives and the more effective alternatives were defined in terms of higher value, the alternative with the highest rating provides the greatest benefit, relative to the other alternatives.

The costs of implementing each of the alternatives were estimated then factored into the assessment. To account for costs, we divided the benefit rating, for each alternative, by its cost to establish a benefit-to-cost ratio (Because the benefit units are different from dollars, we also multiplied the ratio by 20,000 to obtain a ratio that was just less than 1.0). This technique normalizes the benefits with the costs. The alternative with the highest benefit-to-cost ratio is therefore the most desirable or preferred alternative as defined by the overriding project objectives.
and input from the stakeholders. These analyses were performed using a proprietary workbook, a copy of which is included in Appendix F. The specifics of these analyses and the results thereof are discussed below.

6.2. Selection Criteria

The project objectives, discussed in Section 3.2, are also the selection criteria used to develop and compare the enhancement alternatives. These criteria were collectively identified and numerically weighted by GeoEngineers, City of Dayton, RTT and LRTG. The weights, which range from 1 to 5, were based upon the relative level of importance of each objective as defined by the project area stakeholders. The weights, relative to their level of importance to the stakeholders, are listed in Table 18. The associated weights of each selection criteria are listed in Table 19 and discussed in greater detail below.

<table>
<thead>
<tr>
<th>TABLE 18. RELATIVE LEVEL OF IMPORTANCE WEIGHTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 19. WEIGHTED SELECTION CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Criteria (Project Objectives)</td>
</tr>
<tr>
<td>Increase Channel Complexity and Aquatic Habitat</td>
</tr>
<tr>
<td>Increase/Enhance/Diversify Riparian Habitat</td>
</tr>
<tr>
<td>Geomorphic Stability</td>
</tr>
<tr>
<td>Increase Floodplain Connectivity</td>
</tr>
<tr>
<td>Increase Storage Time and Volume</td>
</tr>
<tr>
<td>Rapid Recovery Time</td>
</tr>
<tr>
<td>Design Practically</td>
</tr>
</tbody>
</table>

6.3. Levels of Effectiveness

The level of effectiveness is a quantifiable ranking that numerically defines how an alternative will address each of the selection criteria. Defining effectiveness numerically allows it to be included as a multiplier in the alternative prioritization matrix. Table 20, below shows the various levels of effectiveness considered.
TABLE 20. LEVELS OF EFFECTIVENESS

<table>
<thead>
<tr>
<th>Level of Effectiveness</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ineffective</td>
</tr>
<tr>
<td>2</td>
<td>Minimally Effective</td>
</tr>
<tr>
<td>3</td>
<td>Moderately Effective</td>
</tr>
<tr>
<td>4</td>
<td>Effective</td>
</tr>
<tr>
<td>5</td>
<td>Very Effective</td>
</tr>
</tbody>
</table>

6.4. Conceptual Alternatives

6.4.1. Overview of all Alternatives

A total of five enhancement alternatives, including the “no action” alternative, were developed for this project. The enhancement alternatives were developed utilizing the proposed geomorphic parameters and a combination of the enhancement treatments discussed above. Because the proposed parameters and treatments were developed from our assessment of the historic and existing conditions, they are intended to be appropriate in terms of the site’s geomorphology, hydrology, hydraulics and habitat. And, because the treatments stem from the objectives, which in turn stem from the single overarching project goal, the resulting enhancement alternatives target the project’s project goal as well.

The specific locations of the proposed treatments, in each alternative, are based upon floodplain topography, channel bathometry, vegetated cover, and historic channel locations as observed during field reconnaissance. In locating proposed channel realignments and/or side-channels, we also took into consideration landowner concerns, land use practices and location of infrastructure. Existing floodplain features were utilized in the conceptual designs, wherever possible, to reduce construction costs. Basic geomorphic, engineering, and biological considerations were also taken into account, when developing feasible alternatives, in order to increase constructability, longevity, and biological benefit.

The enhancement alternatives considered are discussed below. In general, the alternatives increase in complexity, disturbance, habitat benefit and cost in the order in which they are presented. Table 21, Comparison of Conceptual Alternatives, which follows these discussions, summarizes how effective each alternative is at achieving each objective. This table is similar to the workbook, included in Appendix F, which was used to compare the alternatives numerically.

6.4.1.1. ALTERNATIVE 1 -

The Sheet 4 series of drawings in Appendix G depict the general concept of Alternative 1. Generally, Alternative 1 is the least invasive of the four “action” alternatives. The general intent of Alternative 1 is to increase channel complexity by utilizing existing landscape features such as; low areas/potential historic channels “sugar” dike removal, and main channel sculpting to allow the channel and floodplain to develop with the least amount of earthwork and structure placement. Removal of the small “sugar” dikes will allow the channel to access more of its floodplain to create more wetted usable area as discharges increase. Existing main channels will be sculpted to accentuate viable pools and riffles, define a channel thalweg and to create more complex habitat structure through the Implementation Reach. All of the proposed LWD structures in Alternative 1
are intended to increase habitat diversity but some also serve the purpose of encouraging the channel to meander to increase floodplain connection and future LWD recruitment. Areas of minimal and degraded riparian habitat will be planted with dense native riparian vegetation and will have partially and fully buried logs and brush located throughout to increase floodplain roughness. Increased floodplain roughness will promote sediment deposition on the floodplain, protect agricultural fields and/or residential buildings, and create a more complete and complex riparian buffer zone. Once established this riparian corridor will provide shade, bank stability, and ultimately a future source of LWD recruitment.

6.4.1.2. ALTERNATIVE 2 -
The Sheet 5 series of drawings, located in Appendix G, depict the general concept of Alternative 2, which has the same proposed design intent as Alternative 1, with slightly more in-stream and off-channel excavation. Alternative 2 proposes to set back a portion of the federally authorized levee system near the confluence to allow access to more floodplain habitat, increase the riparian buffer, and encourage more deposition within this reach. Additionally, Alternative 2 includes increasing the radius of curvature at two locations on the main channel of the North Fork Touchet that currently exhibit cut banks and high erosion potential. This should attenuate approach velocities, bend scour potential, bank erosion rates and protect the North Fork Touchet River Road Right-of-Way.

The goals for Alternative 2 are the same as Alternative 1 but will be achieved more rapidly than with Alternative 1. The more rapid achievement of the goals will require more earthwork and structure placement and, therefore have a higher associated cost. In areas where the channel will be slightly relocated, the steeper eroding banks will be protected by the addition of a terraced LWD and soil structure in the abandoned channel and will be backfilled with the material removed from the excavation. This will create pool habitat and in-stream cover along the outside of the meander bends for fish and will provide greater bank stability in these areas of concern. The levee setback will create more floodplain conveyance, promote more deposition at the confluence and provide a riparian buffer adjacent to the new levee. Again a dense riparian vegetation plan is proposed to create a viable riparian corridor and to increase floodplain roughness to help attenuate and store flood waters.

6.4.1.3. ALTERNATIVE 3 -
As shown on the Sheet 6 series of drawings, Alternative 3 builds upon the complexity of Alternatives 1 and 2 through the addition of more main-stem channel relocations. The intent for Alternative 3 is the same as Alternatives 1 and 2, but creates a more geomorphically appropriate sinuosity, removal of “sugar” levees, the setback of certified levees, and an increase in side channels and high flow channels throughout the Implementation Reach. Alternative 3 anticipates the locations where channel migration and side channel development will be of the most benefit and incorporates them into the design for immediate construction. This includes the setback of a longer length of levee along the main Touchet River, upstream to the confluence. A tight meander pattern, at the very downstream end, is intended to encourage floodplain overtopping and a more prominent backwater condition at smaller discharges to promote deposition of material before entering the confined section of river immediately downstream of the project boundary. Channel relocations in the North Fork and South Fork are proposed to increase sinuosity, floodplain access and disperse energy, and to encourage channel diversity. High flow channels were added through or adjacent to off channel ponds to increase flood storage and on-site detention. Again LWD,
dense riparian buffers, side channel creation, and channel sculpting as described in Alternatives 1 and 2 will be incorporated into the overall design to create a naturally functioning, geomorphically stable channel.

6.4.1.4. ALTERNATIVE 4 –
Alternative 4 (Sheet 7 series of Appendix G) was developed after an initial review of alternatives by a member of the RTT. To create Alternative 4, Alternative 3 was slightly modified to incorporate some aspects of Alternatives 1 and 2 along with a few slight alterations based on landowner concerns. Alterations included the removal of the high flood channel into the off-channel pond and the slight modification of the location of a new meander to avoid a property corner. A more natural meander wave length was designed along the main Touchet River with an increase in high flow channels to attenuate flood conditions. Alternative 4 also included the addition of backwater side channels to increase juvenile rearing habitat throughout the main channel, while promoting hyporheic exchange into these areas. It should be noted that the location of every conceptual design element has been scrutinized for geomorphic and biologic continuity within the given constraints known at the time.

6.4.1.5. ALTERNATIVE 5 –
Alternative 5 proposes no action. If no action is taken at the site, fish spawning and rearing habitat and increased floodplain connection will likely improve very little over time. Reaches adjacent to federally authorized levees will have to meet new compliance regulations and will likely be cleared of existing vegetation reducing shade, riparian vegetation and potential LWD recruitment. In areas without levees that have erosion into some of the existing high banks will become more prominent as the river naturally increase sinuosity and meanders through the floodplain. Natural recruitment of native riparian vegetation and subsequent in-stream LWD will likely improve without taking any action but the process will occur very slowly assuming degrading activities don’t continue. It is unclear how long this natural enhancement process would take but it is reasonable to assume it would take upwards of 100 years or more to achieve the same benefits the previous alternatives would provide within 2-10 years. Left alone it could also become worse as invasive species could colonize more rapidly, bank erosion could increase depending on land use practices, riparian buffers could shrink, and existing or new hardened confined levees could keep the river and its habitat in its current, less-than-optimal condition.

TABLE 21. COMPARISON OF CONCEPTUAL ALTERNATIVES

<table>
<thead>
<tr>
<th>Objective</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Alternative 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase, Channel Complexity and Aquatic Habitat</td>
<td>Minimally Effective</td>
<td>Moderately Effective</td>
<td>Effective</td>
<td>Very Effective</td>
<td>Ineffective</td>
</tr>
<tr>
<td>Increase/Enhance/ Diversify Riparian Habitat</td>
<td>Minimally Effective</td>
<td>Minimally Effective</td>
<td>Effective to Very Effective</td>
<td>Effective to Very Effective</td>
<td>Ineffective</td>
</tr>
<tr>
<td>Geomorphic Stability</td>
<td>Effective</td>
<td>Effective</td>
<td>Effective</td>
<td>Very Effective</td>
<td>Moderately Effective</td>
</tr>
</tbody>
</table>
6.5. Construction Quantities and Cost Estimates

Approximate construction quantities and cost estimates were calculated for each enhancement alternative considered. These costs were developed using a single list of standard unit costs based upon GeoEngineers’ recent project design/construction experience, inquiries to local construction contractors, suppliers and/or agencies, R.S. Means Heavy Construction Cost Data, and other appropriate sources. In addition to unit costs for specific construction quantities, our unit cost basis includes costs and variables to account for inflation, project location adjustment factors, mobilization, incidentals and contingencies. Design and permitting fees have not been included in the construction cost estimates. While these cost estimates are very approximate, they are all based on the same unit costs and therefore provide a sound basis to compare the relative alternatives against one another. The workbook in Appendix F summarizes the construction quantities and costs, which are also presented in Table 22 below.

TABLE 22. COST ESTIMATES FOR EACH ALTERNATIVE

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1</td>
<td>$1,950,000</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>$2,309,000</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>$2,984,000</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>$3,139,000</td>
</tr>
<tr>
<td>Alternative 5</td>
<td>NA</td>
</tr>
</tbody>
</table>

6.6. Benefit-to-Cost Analysis

As noted above, a numerical rating system was used to identify a preferred enhancement alternative. A numerical rating of each alternative was calculated for each objective by multiplying the objective’s level of importance by the alternative’s level of effectiveness in achieving the objective. A total benefit for each alternative was then calculated by summing the alternative’s rating for each objective. Because the more important objectives and the more effective alternatives were defined in terms of higher value, the alternative with the highest rating provides the greatest benefit.
The costs of implementing the alternatives were then factored into the assessment. To account for costs, we divided the benefit rating for each alternative by its cost to establish a benefit-to-cost ratio. Because the benefit units are different from dollars, we multiplied the ratio by 20,000 to obtain a ratio that was just less than 1.0. This technique normalizes the benefits with the costs.

The alternative with the highest benefit-to-cost ratio is therefore the more desirable or preferred alternative as defined by the overriding project goals and input from the stakeholders. This analysis was performed using a workbook, which is included in Appendix F. Table 23 summarizes the numerical results of this benefit-to-cost analysis. The resulting benefits and cost for each alternative are graphically expressed in Chart 1. The benefit-to-cost ratio is expressed in Chart 2. Because it has the highest benefit-to-cost ratio, Alternative 4 is the preferred alternative as defined by the overriding project goals and input from the stakeholders.

TABLE 23. ALTERNATIVE BENEFITS, COSTS AND BENEFIT: COST RATIOS

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Description</th>
<th>Benefit Rating</th>
<th>Cost ($)</th>
<th>Benefit: Cost Ratio (x20,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Side channel and high flow channel creation (minimal excavation)</td>
<td>61</td>
<td>1,950,000</td>
<td>0.63</td>
</tr>
<tr>
<td>2</td>
<td>Side channel and high flow channel creation with levee setback and main stem alterations that increases complexity</td>
<td>83</td>
<td>2,309,000</td>
<td>0.71</td>
</tr>
<tr>
<td>3</td>
<td>Side channel and high flow channel creation with larger levee setback and main stem channel relocation that increases complexity</td>
<td>109</td>
<td>2,984,000</td>
<td>0.73</td>
</tr>
<tr>
<td>4</td>
<td>Side channel and high flow channel creation with larger levee setback and main stem channel relocation that increases complexity and protects some existing floodplain features</td>
<td>120</td>
<td>3,139,000</td>
<td>0.76</td>
</tr>
<tr>
<td>5</td>
<td>No Action</td>
<td>42</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
6.7. Chart 1. Alternative Ratings and Costs

6.9. Conclusions of Alternatives Development

Based on the process described in this report, input from the stakeholders and discussions with LRTG and RTT, the enhancement alternative that provides the greatest benefit for its associated cost should be selected as the preferred alternative. Accordingly, Conceptual Alternative 4 is considered the preferred alternative because it has the highest benefit to cost ratio. This alternative attempts to satisfy the project goals by the following:

- Creates new and reconnects existing side channels and floodplain areas
- Enhances channel sinuosity to encourage sediment deposition (potentially reduce sediment entering the levee floodway) and create more diverse and complex in-stream habitat for juvenile and adult native salmonids
- Enhances the riparian corridor to provide shade and future LWD recruitment
Encourages geomorphic stability

- Increases flood storage capacity to help attenuate flood elevations
- Has a relatively rapid recovery time due to the magnitude of work being completed

7.0 LIMITATIONS

We have prepared this report for the City of Dayton and their authorized agents and regulatory agencies for the Touchet River Geomorphic Assessment. The watershed-scale project area begins upstream of the City of Dayton, Washington and continues upstream to the headwaters. The “Implementation Reach” encompasses areas of the main stem, North Fork and South Fork Touchet River and the associated floodplain areas immediately upstream of Dayton.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in the field of stream and river habitat enhancement, stabilization and enhancement design engineering in this area at the time this report was prepared. The conclusions, recommendations, and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, expressed or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to the appendix titled “Report Limitations and Guidelines for Use” for additional information pertaining to the use of this report.

8.0 REFERENCES

Columbia County Comprehensive Flood hazard Management Plan, 2002

