DISTRIBUTION OF PRECIPITATION

EXPLANATION

The map shows the distribution of precipitation in the Columbia Plateau region of Washington, Oregon, and Idaho. The data are based on observations from various weather stations across the region. The map uses different colors to indicate varying levels of precipitation, with darker shades representing higher amounts.

THREE HEAVY AREAS

Three areas show particularly high precipitation levels:
1. North-Central Oregon
2. Northeastern Washington
3. Southeastern Idaho

These areas are known for their mountainous terrain, which influences the amount and distribution of precipitation.

CONSEQUENCES AND VERTICAL DISTRIBUTION

Rainfall

- In the Columbia Plateau region, rainfall is mostly concentrated in the winter months, with snowfall occurring in the higher elevations.
- The map shows that rainfall amounts vary significantly, with some areas receiving less than 10 inches per year, while others exceed 40 inches.

Snowfall

- Snowfall is heaviest in the mountainous areas, with some regions receiving over 100 inches annually.
- The map indicates that snowfall can occur throughout the year, with higher elevations experiencing heavier snowfall.

Water Resources

- The region is rich in water resources, including rivers, lakes, and underground aquifers.
- The Columbia River, Snake River, and their tributaries provide significant water supplies for irrigation, hydroelectric power, and domestic use.

Surface-Water Resources

- The map highlights the distribution of surface water bodies such as lakes, rivers, and streams.
- It shows the importance of these water bodies in the region's ecology and economy.

Land Use

- The map also indicates land use patterns, showing areas dedicated to agriculture, forestry, and urban development.
- The distribution of precipitation influences land use decisions, with areas receiving more rainfall often designated for agriculture or forestry.

Overall, the map provides a comprehensive view of the precipitation distribution in the Columbia Plateau region, highlighting the natural and human-driven factors that shape the region's water resources.
The 10 class only classes in the tables of the period of record data are number of years with that particular range of rainfall and the amount of runoff produced. The runoff was determined by the method of best fit described in the previous section. The results of this analysis are shown in Table 1. The table includes the number of years with a particular range of rainfall and the amount of runoff produced. The results are shown in Figure 4. The figure shows the relationship between rainfall and runoff. The method of best fit was used to determine the trend line for the data. The trend line is shown in Figure 5. The results of the analysis are shown in Table 2.

The main annual precipitation for each of the 10 class ranges shown in Figure 4 was calculated by dividing the total precipitation for the class by the number of years in the class. The results are shown in Table 3. The trend line for the data is shown in Figure 6. The results of the analysis are shown in Table 4.

The data for the period of record for the years with and without precipitation is shown in Table 5. The data for the years with precipitation is shown in Table 6. The data for the years without precipitation is shown in Table 7. The trend line for the data is shown in Figure 7. The results of the analysis are shown in Table 8.

The results of the analysis are shown in Table 9. The trend line for the data is shown in Figure 8. The results of the analysis are shown in Table 10.

The data for the period of record for the years with and without precipitation is shown in Table 11. The data for the years with precipitation is shown in Table 12. The data for the years without precipitation is shown in Table 13. The trend line for the data is shown in Figure 9. The results of the analysis are shown in Table 14.

The data for the period of record for the years with and without precipitation is shown in Table 15. The data for the years with precipitation is shown in Table 16. The data for the years without precipitation is shown in Table 17. The trend line for the data is shown in Figure 10. The results of the analysis are shown in Table 18.

The data for the period of record for the years with and without precipitation is shown in Table 19. The data for the years with precipitation is shown in Table 20. The data for the years without precipitation is shown in Table 21. The trend line for the data is shown in Figure 11. The results of the analysis are shown in Table 22.

The results of the analysis are shown in Table 23. The trend line for the data is shown in Figure 12. The results of the analysis are shown in Table 24.