Soil Cleanup Levels for Industrial Land Use

Table 745-1

Notes on the Development of Method A Cleanup Levels WAC 173-340-720, 740, and 745

The following tables were prepared as part of the rule-making process for the amended MTCA rule adopted February 12, 2001. The information in the tables was used when Ecology developed the Method A Cleanup Levels for the revised regulation.

The tables compile cleanup level calculations for various exposure pathways for both carcinogenic and noncarcinogenic heath effects, applicable state and federal laws, laboratory practical quantitation limits and other relevant information that was used to develop the Method A cleanup levels. While this is useful background information, the values in these tables are not the adopted rule and should not be used as Method A cleanup levels. Use the tables, footnotes and accompanying text in the adopted regulation to develop Method A cleanup levels.

NOTE: Some columns in these tables refer to "current" and "proposed" Method A values. "Current" as used in these tables refers to the cleanup levels as they existed prior to the adoption of the February 12, 2001 rule amendments. "Proposed" as used in these tables are the cleanup levels that were adopted on February 12, 2001.

February 9, 2001

November 23, 2004 revision (1)

TO: Interested Persons

FROM: Pete Kmet, Senior Environmental Engineer

Toxics Cleanup Program

SUBJECT: Calculations for Table 745-1

Method A Soil Cleanup Levels for Industrial Properties

Attached are several tables in excel format providing information on the development of the Method A soil cleanup levels for industrial properties in Table 745-1, WAC 173-340-900.

<u>Table 1</u>: A quick summary providing Method A cleanup levels for industrial properties (Table 745-1) and a brief explanation of the reasoning in the development of Method A values

<u>Table 2</u>: A detailed compilation of the information considered in the development of Method A soil cleanup levels for unrestricted land uses. This information includes:

- The Method B direct contact exposure pathway soil values for each substance. This includes values for both soil ingestion and soil ingestion plus dermal adsorption (adsorption through the skin) for both carcinogens and non-carcinogens, where sufficient information was available for the calculations as of February, 2001;
- The results for the soil leaching pathway from the 3 and 4 phase models as of February, 2001;
- Terrestrial ecological evaluation values from Tables 749-2 and 749-3;
- Regulatory values from other laws as of February, 2001; and
- Natural background, practical quantitation limits and other relevant information available as of February, 2001.

<u>Table 3</u>: Describes the assumptions used to calculate the standard Method C soil direct contact cleanup values for industrial land uses for carcinogens using equation 745-2 in WAC 173-340-745(5)(b)(iii)(B)(II).

<u>Table 4</u>: Describes the assumptions used to calculate the standard Method C soil direct contact cleanup values for industrial land uses for non-carcinogens using equation 745-1 in WAC 173-340-745(5)(b)(iii)(B)(I).

Table 5: Describes the assumptions and equation used to calculate the modified Method C values for industrial land uses assuming concurrent soil ingestion plus dermal (skin) absorption for carcinogens using equation 745-5 in WAC173-340-745(3)(b)(iii)(B).

<u>Table 6</u>: Describes the assumptions and equation used to calculate the modified Method C values for industrial land uses assuming concurrent soil ingestion plus dermal (skin) absorption for noncarcinogens using equation 745-4 in WAC173-340-745(3)(b)(iii)(A).

<u>Table 7</u>: Describes the assumptions and equations used to calculate soil concentrations protective of ground water for drinking water use, using the 3 phase leaching model.

<u>Tables 8-10</u>: 4-phase model results summary sheets for 2 brands of fresh gasoline and these same gasolines using various weathered compositions.

(1) This memo and attached excel tables explain the basis for the Method A cleanup levels in the MTCA rule adopted February 12, 2001. The memos and tables have been slightly revised from the originals issued on February 9, 2001 to clarify certain information in response to questions received since issuance of the original memos and tables. The original memos and tables can be found in appendix D of the concise explanatory statement for the February 12, 2001 rule amendments (http://www.ecy.wa.gov/programs/tcp/regs/reg_main.html)

Table 1: Quick Summary -- Basis for Method A Industrial Land Use Soil Values

	1	1991	2001	
		Method A	adopted	Basis
Hazardous Substance	CAS Number	Cleanup Level	Cleanup Level	for
i ideal dodo o destallo	0,10114	mg/kg	mg/kg	Standard
Arsenic	7440-38-2	200	20	Protection of drinking water, adjusted for background (1)
Benzene	71-43-2	0.5	0.03	Protection of drinking waterbased on both 3 and 4 phase models.
Benzo(a)Pyrene	50-32-8	none	2	Protection of drinking water3 phase model.
Cadmium	7440-43-9	10	2	Protection of drinking water, adjusted for PQL.
Chromium (total)	7440-47-3	500.0	none	Replaced by values for Cr III and Cr VI.
Chromium VI	18540-29-9		19	Protection of drinking water3 phase model.
Chromium III	16065-83-1		2000	Protection of drinking water3 phase model.
DDT	50-29-3	5	4	Protection of drinking water3 phase model.
Ethylbenzene	100-41-4	20	6	Protection of drinking water3 phase model.
Ethylene dibromide (EDB)	106-93-4	0.001	0.005	Protection of drinking water, adjusted for PQL
Lead	7439-92-1	1000.0	1000	Ingestion (3)
				```
Lindane	58-89-9	20	0.01	Protection of drinking water, adjusted for PQL
Methylene chloride	75-09-2	0.5	0.02	Protection of drinking water3 phase model.
Mercury (inorganic)	7439-97-6	1	2	Protection of drinking water3 phase model.
MTBE	1634-04-4	none	0.1	Protection of drinking water3 phase model.
Naphthalenes	91-20-3	none	5	Protection of drinking water3 phase model. Total of naphthalene, 1-methyl naphthalene & 2-methyl naphthalene
PAHs (carcinogenic)		20	none	Replaced by benzo(a)pyrene.
PCB Mixtures	1336-36-3	10.0	10	ARAR. This is a total value for all PCBs in the soil sample.
Tetrachloroethylene	127-18-4	0.5	0.05	Protection of drinking water3 phase model.
Toluene 1.1.1 Trichloroethane	108-88-3 71-55-6	40 20	7 2	Protection of drinking water3 phase model.  Protection of drinking water3 phase model.
, ,				ž i
Trichloroethylene	79-01-5	0.5	0.03	Protection of drinking water3 phase model.
Xylenes	1330-20-7	20	9	Protection of drinking water3 phase model. Total of all m, o & p xylene.
TPH (total)	14280-30-9			
Gasoline range organics	6842-59-6			
GRO with benzene	30.2 00 0	100	30	Protection of drinking water4 phase model, assuming weathered gasoline composition.
GRO w/o benzene		100	100 (5)	Protection of drinking water4 phase model, assuming highly weathered gasoline composition.
Diesel Range Organics		200	2000	Protection of drinking waterresidual saturation
Heavy Oils		200	2000	Protection of drinking waterresidual saturation for diesel.
Electrical Insulating Mineral Oil	•	200 (4)	4000	Protection of drinking waterresidual saturation

⁽¹⁾ Based on background value in table 740-1. Ecology intends to review and, if appropriate, update this value in a future rulemaking.

⁽²⁾ This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8).

⁽³⁾ Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update this value in a future rulemaking.

⁽⁴⁾ Ecology also issued a fact sheet in 1995 (#95-157-TCP) allowing the use of 2000 mg/kg at electrical substations and switchyards.

With the adoption of the rule in 2001, this fact sheet has been withdrawn.

⁽⁵⁾ To use this value no benzene must be present in the soil and the total of ethyl benzene, toluene & xylene must be less than 1% of the gasoline mixture.

### Table 2: Summary Table for Method A Industrial Soil Cleanup Values in Table 745-1

Method A Soil Cleanup Levels -for In	dustrial Land Us	es										
		2001 adopted			Dermal +	Dermal +	Leaching	100 X				
		Method A	Ingestion	Ingestion	Ingestion	Ingestion	3-Phase	Ground water	.,			
Hazardous Substance	CAS Number	Cleanup Level	Carcinogen	Noncarc.	Carcinogen	Noncarc.	M odel	C/U level	Vapor	Other		
		mg/kg (1)	mg/kg (2)	mg/kg (3)	mg/kg (4)	mg/kg (5)	mg/kg (6)	mg/kg (7)	mg/kg (8)	mg/kg (9)	<del> </del>	-
Arsenic	7440-38-2	200.0	88.0	1,050	39	466	2.9	0.5				
Benzene	71-43-2	0.5	4,526	10,500	2,627		0.028	0.5		0.1		
Benzo(a)Pyrene	50-32-8	none	18		4.3		0.23/1.9	0.01				
Cadmium	7440-43-9	10.0		3,500	-	1,460	0.69	0.5				
Chromium (total)	7440-47-3	500.0									1	-
Chromium VI	18540-29-9	300.0		10,500		1,226	19	5		500		-
Chromium III	16065-83-1			pure		352,726	2,000	10		000		
DDT	50-29-3	5.0	386	1,750	158	715	4.1	0.03				
Ethylbenzene	100-41-4	20.0	386	350,000	158	148,655	6.1	70				+
•				330,000		140,000					-	-
Ethylene dibromide (EDB)	106-93-4	0.001	1.5		0.66		0.00005	0.001				
Lead	7439-92-1	1000.0	1,000 (10)				3,000	1.5			<del> </del>	-
Lindane	58-89-9	20.0	101	1,050	33	341	0.0062	0.02				
Methylene chloride	75-09-2	0.5	17,500	210,000	10,157	121,878	0.022	0.5				
Mercury (inorganic)	7439-97-6	1.0		1,050		252	2.1	0.2			+	+
MTBE	1634-04-4	none		1,000		202	0.085	2				
Naphthalene	91-20-3			70,000		16,613	4.5	16			<b></b>	
PAHs (carcinogenic)(11)	91-20-3	none 20.0	18	70,000	4.3	10,013	0.23	0.01			+	+
PCB Mixtures (12)	1336-36-3	10.0	66/328/1,875	70/245	14/70/401	15/52	0.2/1.6	0.01				
Tetrachloroethylene	127-18-4	0.5	2,574	35,000	1,093		0.053	0.5				-
Toluene	108-88-3	40.0		700,000		297,309	7.3	100				
1,1,1 Trichloroethane	71-55-6	20.0		pure		pure	1.6	20				
Trichloroethylene	79-01-5	0.5	11,932		5,068	pure	0.033	0.5				
Xylenes	1330-20-7	20.0		pure		•	9.1	100				
(1) From WAC 173-340-740 Table 2 [1/	26/96 revision].											
(2) Calculated using equation 745-2.											<del>                                     </del>	-
<ul><li>(3) Calculated using equation 745-1.</li><li>(4) Calculated using equation 745-5. Fe</li></ul>	or comparison on	ly Not used in a	cotting cloanup la	vols since defa	ulte not changed	for other nathwa	WC.					
(5) Calculated using equation 745-3. Fi												-
(6) Calculated using equation 747-1 and								A and B values for	or B(a)P.			
(7) Calculated using 100 X table 720-1									(-)			
(8) Vapor values not calculated.												
(9) Benzene from 4 phase leaching mod			cumented in 199	1 MTCA respon	siveness summa	ıry.						
(10) Value documented in 1991 MTCA							<u> </u>				<b>_</b>	
(11) Based on benzo (a) pyrene. For le				ater cleanup lev	el, second value	is based on Me	thod A ground	water cleanup le	vel for B(a)P.		<del> </del>	<del> </del>
(12) PCB values based on various aroc	niors and IRIS va	ues for PCB mi	xtures.									1
											+	<del> </del>
	1						-				+	+
										1	1	†
			1								<u> </u>	†
											1	1
												1
			1	-					-	1		

	Ta	able 2: Sur	nmary Tab	le for Meth	od A Indust	rial Soil C	leanup Val	ues in Tab	le 745-1				
										1	T		
Method A Soil Cleanup Levels -for In	dustrial Land Us	ies											
-		2001 adopted		Dermal +	Leaching		100 X						
		Method A	Ingestion	Ingestion	Using	Residual	Ground water						
Hazardous Substance	CAS Number	Cleanup Level	Noncarc.	Noncarc.	4-phase Model	Saturation	C/U level	Vapor					
riazardous oubstance	OAO Number	mg/kg (1)	mg/kg (2)	mg/kg (3)	mg/kg (4)	mg/kg (5)	mg/kg (6)	mg/kg (7)					
		1119/119 (1)	mg/kg (2)	ing/kg (o)	mg/kg (+)	mg/kg (o)	mg/kg (o)	mg/kg (7)		1	1		1
TPH (total)	14280-30-9												
	0010 50 0	400											
Gasoline range organics	6842-59-6	100											
GRO with benzene		<u> </u>	210,000	150,000	1 / 23 to 28	1,000	80	unknown					
GRO without benzene					105	1,000	100	unknown					
Diesel Range Organics		200	170,000	39,000	No upper limit	2,000	50	>10,000					
Heavy Oils (8)		200	170,000	39,000	No upper limit	2,000	50	>10,000					
Electrical Insulating Mineral Oil		2000 (9)	340,000	70,000	No upper limit	4,000	100	Not volatile					
		1											
(4) 5	(0.0.(0.0	1											
(1) From WAC 173-340-740 Table 2 [1/		<del>!</del>											
(2) Calculated using surrogates. See 1.													
(3) Calculated using surrogates and equ	uation /40-4. See	∋ 1/29/99 Steve F	KODD memo.	(00)			( 0 40( )				1		
(4) Calculated using 4 phase model. Fo													
For GRO without benzene, assume													
For diesel, heavy oils and mineral o						e the water ta	ble.						
(5) Residual saturation for coarse soils					ral oil.								
(6) Calculated using 1991 method of 10													
(7) Gasoline vapors not calculated. The	e current Method	A value of 100 pr	om thought to be	protective for	vapor pathway. Di	esel vapors ba	sed on qualitativ	ve observations	at sites by PLI	Α.			
(8) Based on diesel composition.		<u> </u>											
(9) Ecology also issued a fact sheet in 1				kg at electrical s	substations and sw	ritchyards.							
With the adoption of the rule in 200	1, this fact sheet r	ias been withdra	wn.										
		1			<u> </u>			T					
		<u> </u>											
		<u> </u>											
		1											
		<u> </u>											
		<u> </u>											
	<u> </u>	<del>                                     </del>	1					1			1		
	<u> </u>	<del>                                     </del>	1					1			1		
	<del> </del>	<del>                                     </del>	1		11			1	1				
	<del> </del>	<del>                                     </del>	1		11			1	1				
					-		1	<del>                                     </del>			1		
								<del>                                     </del>					
	<b></b>	<b></b>			11		1	1	1		1		
	<u> </u>	<b></b>						1			1		
								<del>                                     </del>					
	<b></b>	<b></b>			11		1	1	1		1		
	<b></b>	<b></b>			11		1	1	1		1		
	<u> </u>	<b></b>						1			1		
		<u> </u>						1			1		
								1					
	<u> </u>							1					
	<u> </u>							1					
			]					1					

### Table 2: Summary Table for Method A Industrial Soil Cleanup Values in Table 745-1

•												
	Ecological	Ecological						1991	2001 adopted			
	Simplified	Indicator	Most Stringent	Controlling				Method A	Method A		Basis	
Hazardous Substance	Evaluation	Concentration	Non-Eco Path	Non-Eco	ARARs	PQL	Background				for	
	mg/kg (1)	mg/kg (2)	mg/kg	Pathway	mg/kg	mg/kg (3)	mg/kg (4)	mg/kg	mg/kg		Standard	
Arsenic	20	7	2.9	Leaching		1 (SW7060)	7 & 20	200.0	20	Leaching, adjusted		
Benzene			0.1	Leaching		0.005 (SW8260)		0.5	0.1	Protection of drinki	ng water4 pha	ase model
Benzo(a)Pyrene	300	12	1.9	Leaching		0.05 (SW8270)		none	2	Protection of drinking	ng water3 pha	ase model (6)
Cadmium	36	14	0.69	Leaching		2 (SW6010A)	1	10.0	2	Leaching, adjusted	for PQL. (7)	` '
Chromium (total)	135	67				2 (SW6010A)	42	500.0				
Chromium VI		0.	19	Leaching		1 (SW3060A)		000.0	19	Protection of drinking	ng water3 pha	ase model
Chromium III			2,000	Leaching		2 (SW6010A)			2000	Protection of drinki		
DDT	1	0.75	4.1	Leaching		0.05 (SW8081)		5.0	4	Protection of drinki	na water3 nh:	asa modal
Ethylbenzene		0.73	6.1	Leaching		0.005 (SW8260)		20.0	6	Protection of drinki		
•												
Ethylene dibromide (EDB) Lead	220	118	0.00005 1,000	Leaching Ingestion		0.005 (SW8260) 5.0 (SW6010A)	17	0.001 1000.0	0.001 1000	Leaching, adjusted Ingestion (8)	for PQL	
						` '	17			9 , ,		
Lindane	10	6	0.0062	Leaching		0.01 (SW8081)		20.0	0.01	Leaching, adjusted		
Methylene chloride			0.022	Leaching		0.005 (SW8260)	)	0.5	0.02	Protection of drinki	ng water3 pha	ase model
Mercury (inorganic)	9	5.5	2.1	Leaching		0.1 (SW7471)	0.07	1.0	2	Protection of drinking		
MTBE			0.085	Leaching		0.005 (SW8260)	)	none	0.1	Protection of drinki	ng water3 pha	ase model
Naphthalenes			4.5	Leaching		0.5 (SW8260)		none	5	Protection of drinking	ng water3 pha	ase model (10)
PAHs (carcinogenic)	300	12	1.9	Leaching		0.05 (SW8270)		20.0	none	Replaced with benz	zo(a)pyrene.	, ,
PCB Mixtures	2	0.65	0.2	Leaching	10	0.04 (SW8082)		10.0	10	ARAR (9)		
Tetrachloroethylene		0.03	0.053	Leaching	- 10	0.005 (SW8260)		0.5	0.05	Protection of drinking	ng water3 pha	ase model
•						ì						
Toluene 1,1,1 Trichloroethane			7.3 1.6	Leaching Leaching	_	0.005 (SW8260) 0.005 (SW8260)		40.0 20.0	7 2	Protection of drinki		
						` ′	'					
Trichloroethylene			0.033	Leaching		0.005 (SW8260)		0.5	0.03	Protection of drinking		
Xylenes			9.1	Leaching		0.015 (SW8260)	1	20.0	9	Protection of drinki	ng water3 pna	ase model
(1) Value from Table 749-2 for industria	al land use. For re	eference only, no	t used in develor	ing Method A v	alues.							
(2) Wildlife protection value from Table												
(3) From Manchester Lab												
(4) For arsenic, 1st value from upper 9							ental Services.	All others uppe	r 90% in WA S	tate from report # 94	-115.	
(5) Based on background value in table					value in a futur	e rulemaking.						
<ul><li>(6) This can also be used as the total to</li><li>(7) For cadmium, there are two possib</li></ul>					a later bas ba		in the mean on		4 4			
(8) Ecology decision not to change curr								mmonly used tes	st method.			
(9) Cleanup level is sum of all PCBs. A								of PCB contamin	L ated facilities u	nder TSCA)		
(10) This is a total of all naphthalene, 1								- CD comanii	atou raominoo u	1		
						,						
	1											
	<del> </del>						<del> </del>			<del>                                     </del>		
	1	1	1		1	1	1	1	1	1 1	1	

						O		45 4	
	Table 2: S	ummary 1a	pie for Met	nod A Inc	dustrial Soil	Cleanup v	alues in Ta	bie /45-1	
dustrial Land Us	es								
	Ecological								
	Indicator	Most Stringent	Controlling				Method A	Method A	Basis
Evaluation	Concentration	Non-Eco Path	Non-Eco	ARARs	PQL	Background	Cleanup Level	Cleanup Level	l for
mg/kg (1)	mg/kg (2)	mg/kg	Pathway	mg/kg	mg/kg (3)	mg/kg	mg/kg	mg/kg	Standard
1,000 to 12,000	1,000 to 5,000	23 to 28	Leaching		5 (NWTPH-Gx)		100	30	Protection of drinking water(4)
1,000 to 12,000	1,000 to 5,000	105	Leaching		5 (NWTPH-Gx)		100	100	Protection of drinking water(5)
2,000 to 15,000	2,000 to 6,000	2000	Leaching		25 (NWTPH-Dx)		200	2000	Residual Saturation
2,000 to 15,000	2,000 to 6,000	2000	Leaching		100 (NWTPH-Dx	:)	200	2000	Residual Saturation
		4000	Leaching		100 (NWTPH-Dx	(1)	200 (7)	4000	Residual Saturation
able 749-3. For r	eference only, n	ot used in develo	ping Method A	values.					
				1					
weathered gasoli	ne assuming no	benzene present	in soil and that	ethyl benzene	e, toluene & xylene	are less than 1	% of the gasolin	e mixture.	
			g at electrical su	ubstations and	switchyards.				
, this fact sheet h	as been withdra	wn.							
t .	Lustrial Land Us  Ecological Simplified Evaluation mg/kg (1)  1,000 to 12,000 2,000 to 15,000 2,000 to 15,000 2,000 to 15,000 ed land use. For able 749-3. For investhered gasolii weathered gasolii weathered gasolii g95 (#95-157-TC	Simplified   Indicator   Evaluation   Evaluation   Evaluation   Evaluation   Evaluation   Mg/kg (2)	Simplified   Indicator   Most Stringent	Ecological   Ecological   Simplified   Indicator   Evaluation   Concentration   mg/kg (1)   mg/kg (2)   Most Stringent   Controlling   Non-Eco Path   Non-Eco   mg/kg   Pathway	Simplified   Indicator   Evaluation   Concentration   Most Stringent   Controlling   Non-Eco Path   Non-Eco   ARARS   mg/kg (1)   mg/kg (2)     Non-Eco Path   Non-Eco   ARARS   mg/kg   Pathway   mg/kg   Pathw	Simplified   Indicator   Most Stringent   Controlling   Non-Eco Path   Non-Eco	Simplified   Indicator   Most Stringent   Controlling   Non-Eco Path   Policy   Path   Non-Eco Path   Non-Eco Path   Policy   Po	Simplified   Indicator   Most Stringent   Controlling   Method A	Ecological Ecological Simplified Indicator Evaluation Concentration mg/kg (1) mg/kg (2) Most Stringent Non-Eco ARARs PQL Background Cleanup Level Cleanup Leve mg/kg Pathway mg/kg mg/kg (3) mg/kg mg/

Table 3: Method C Industrial Soil Calculations for Carcinogens

Risk CalculationsCarcino	genic Effects	of Soil Ing	estion										
						Cancer							
_		Risk	Avg. Body	Lifetime	Unit Conv.	Potency	G.I. Abs.	Soil	Duration	Frequency	Method C		
Parameter	CAS No.		Weight		Factor	Factor	Fraction	Ing. Rate	of Exposure		Carcinogen		ARAR(4)
		(unitless)	(kg)	(years)	(ug/mg)	(kg-day/mg)	(unitless)	(mg/day)	(years)	(unitless)	(mg/kg)	(mg/kg)	(unitless)
Arsenic (5)	7440-38-2	0.00001	70	75	1,000,000	1.5	1.0	50	20	0.4	88		
Benzene	71-43-2	0.00001	70	75	1,000,000	0.029	1.0	50	20	0.4	4,526		
Cadmium	7440-43-9					not available							
T Chromium	7440-47-3												
Chromium III	16065-83-1					not available							
Chromium VI	18540-29-9					not available							
DDT	50-29-3	0.00001	70	75	1.000.000	0.34	1.0	50	20	0.4	386		
Ethylbenzene	100-41-4	0.00001	70	13	1,000,000	not available		30	20	U. <del>4</del>	300		
. ,			_	_				_	_	_			
Ethylene dibromide (EDB)	106-93-4	0.00001	70	75	1,000,000	85	1.0	50	20	0.4	1.5		
Lead	7439-92-1					not available							
Lindane	58-89-9	0.00001	70	75	1,000,000	1.3	1.0	50	20	0.4	101		
Methylene chloride	75-09-2	0.00001	70	75	1,000,000	0.0075	1.0	50	20	0.4	17,500		
Mercury (inorganic)	7439-97-6					not available							
MTBE	1634-04-4					not available							
Naphthalene	91-20-3					not available							
cPAH Mixtures	na												
Benzo[a]anthracene	56-55-3					not available					-		
Benzo[b]fluoranthene	205-99-2					not available							
Benzo[k]fluoranthene	207-08-9					not available					-		
Benzo[a]pyrene	50-32-8	0.00001	70	75	1,000,000	7.3	1.0	50	20	0.4	18		
Chrysene	218-01-9	0.00001	70	73	1,000,000	not available		30	20	0.4	10		
Dibenzo[a,h]anthracene	53-70-3					not available							
Ideno[1,2,3-cd]pyrene	207-08-9					not available							
idene[1,2,0 da]pyrene	201 00 0					Tiot available							
(1) Source of Cancer Potence	y Factor is the	oral slope	factors from	FDΔ'e IDI	S database	except for Lin	dane which	is from HE	ΔST				
(2) Value calculated using ed						CACCPL IOI LII	GUITE WITHOUT	i io ii oiii i IL			+		
(3) Applicable, relevant and			accumption	is in that 6	quation.						+		
(4) ARAR divided by Method			lded values	indicate A	RAR exceed	ds MTCA reau	irement tha	t risk not ex	ceed 1 X 10-5	fi.e. >101.	1		
(5) The MTCA 2.0 CLARC to											ere.		
,	, , , , , ,	, -					. 3						

### **Table 3: Method C Industrial Soil Calculations for Carcinogens**

Risk CalculationsCarcino	genic Effects	of Soil Ing	jestion										
						Cancer							
		Risk	Avg. Body	Lifetime	Unit Conv.	Potency	G.I. Abs.	Soil	Duration	Frequency	Method C	ARAR (3)	Risk @
Parameter	CAS No.		Weight		Factor	Factor	Fraction	Ing. Rate	of Exposure	of Contact	Carcinogen		ARAR(4)
		(unitless)	(kg)	(years)	(ug/mg)	(kg-day/mg)	(unitless)	(mg/day)	(years)	(unitless)	(mg/kg)	(mg/kg)	(unitless)
PCB mixtures	1336-36-3											1.0	
High Risk & Persistence		0.00001	70	75	1,000,000	2.0	1.0	50	20	0.4	66	1.0	0.02
Low Risk & Persistence		0.00001	70	75	1,000,000	0.4	1.0	50	20	0.4	328	1.0	0.003
Lowest Risk & Persistence		0.00001	70	75	1,000,000	0.07	1.0	50	20	0.4	1,875	1.0	0.001
Aroclor 1016	12674-11-2					not available							
Arochlor 1248	12672-29-6					not available							
Arochlor 1254	11097-69-1					not available							
Arochlor 1260						not available							
Tetrachloroethylene (PCE)	127-18-4	0.00001	70	75	1,000,000	0.051	1.0	50	20	0.4	2,574		
Toluene	108-88-3					not available							
1,1,1 Trichloroethane	71-55-6					not available					-		
Trichloroethylene	79-01-6	0.00001	70	75	1,000,000	0.011	1.0	50	20	0.4	11,932		
Xylenes	1330-20-7					not available							
m-Xylene	108-38-3					not available							
o-xylene	95-47-6					not available							
p-xylene						not available							
(1) Source of Cancer Potency	Factor is the	oral slope	factors from	FPA's IRI	S database	except for te	trachloroeth	vlene trichl	orothylene and	d vinyl chloric	le which are fo	om HEAST	-
(2) Value calculated using eq								,,	,		1		-

⁽²⁾ Value calculated using equation 745-2 and default assumptions in that equation.

(3) Applicable, relevant and appropriate requirement. Source for PCBs is 40 CFR Part 761.61(a)(4)(i)(A).

(4) ARAR divided by Method B value in column K. Bolded values indicate ARAR exceeds MTCA requirement that risk not exceed 1 X 10-5 [i.e. >10].

Table 4: Soil Ingestion -- Method C Industrial Soil Calculations for Noncarcinogens

Risk CalculationsNoncar	cinogenic Ef	tects of Soil	Ingestion								
		Reference	Avg. Body	Unit Conv.	Hazard	Soil	G.I. Abs.	Frequency	Method C	ARAR (3)	HQ @
Parameter	CAS No.	Dose (1)	Weight	Factor	Quotient	Ing. Rate	Fraction	of Contact	Noncarc(2)		ARAR (4
		(mg/kg-day)	(kg)	(ug/mg)	(unitless)	(mg/day)	(unitless)	(unitless)	(mg/kg)	(mg/kg)	(unitless
Arsenic (5)	7440-38-2	0.0003	70	1,000,000	1	50	1.0	0.4	1,050		
Benzene	71-43-2	0.003	70	1,000,000	1	50	1.0	0.4	10,500		
Cadmium	7440-43-9	0.001	70	1,000,000	1	50	1.0	0.4	3,500		
T Chromium	7440-47-3	not available									
Chromium III	16065-83-1		70	1,000,000	1	50	1.0	0.4	5,250,000		
Chromium VI	18540-29-9		70	1,000,000	1	50	1.0	0.4	10,500		
DDT	50-29-3	0.0005	70	1,000,000	1	50	1.0	0.4	1,750		
Ethylbenzene	100-41-4	0.1	70	1,000,000	1	50	1.0	0.4	350,000		
Ethylene dibromide (EDB)	106-93-4	not available									
Lead		not available									
Lindane	58-89-9	0.0003	70	1,000,000	1	50	1.0	0.4	1,050		
										_	
Methylene chloride	75-09-2	0.06	70	1,000,000	1	50	1.0	0.4	210,000		
Mercury (inorganic)	7439-97-6		70	1,000,000	1	50	1.0	0.4	1,050		
MTBE	1634-04-4	not available									
Naphthalene	91-20-3	0.02	70	1,000,000	1	50	1.0	0.4	70,000		
cPAH Mixtures	na	not available									
Benzo[a]anthracene	56-55-3	not available	:								
Benzo[b]fluoranthene	205-99-2	not available	:								
Benzo[k]fluoranthene	207-08-9	not available	:								
Benzo[a]pyrene	50-32-8	not available	:								
Chrysene	218-01-9	not available									
Dibenzo[a,h]anthracene	53-70-3	not available									
Ideno[1,2,3-cd]pyrene	207-08-9	not available									
(1) Source of RfDs is EPA's						٨.					
(2) Value calculated using ed	quation 740-1	and default a	assumptions	in that equ	ation.						
(3) Applicable, relevant and											
(4) ARAR divided by Method	B value in co	olumn K. Bolo									
(5) The MTCA 2.0 CLARC ta										1.0 is used h	nere.
· ·	, , ,	<u> </u>									

Table 4: Soil Ingestion -- Method C Industrial Soil Calculations for Noncarcinogens

Risk CalculationsNoncard	inogenic Ef	fects of Soil	Ingestion								
		Reference		Unit Conv.	Hazard	Soil	G.I. Abs.	_	Method C	ARAR (3)	
Parameter	CAS No.	Dose (1)	Weight	Factor	Quotient	Ing. Rate		of Contact	Noncarc(2)		ARAR (4)
		(mg/kg-day)	(kg)	(ug/mg)	(unitless)	(mg/day)	(unitless)	(unitless)	(mg/kg)	(mg/kg)	(unitless)
PCB mixtures	1336-36-3	not available								1.0	
High Risk & Persistence		not available									
Low Risk & Persistence		not available									
Lowest Risk & Persistence		not available									
Aroclor 1016	12674-11-2	0.00007	70	1,000,000	1	50	1.0	0.4	245.0	1.0	0.004
Arochlor 1248	12672-29-6	not available									
Arochlor 1254	11097-69-1	0.00002	70	1,000,000	1	50	1.0	0.4	70.0	1.0	0.01
Arochlor 1260		not available									
Tetrachloroethylene (PCE)	127-18-4	0.01	70	1,000,000	1	50	1.0	0.4	35,000		
Toluene	108-88-3	0.2	70	1,000,000	1	50	1.0	0.4	700,000		
1,1,1 Trichloroethane	71-55-6	0.9	70	1,000,000	1	50	1.0	0.4	3,150,000		
Trichloroethylene	79-01-6	not available									
Xylenes	1330-20-7	2.0	70	1,000,000	1	50	1.0	0.4	7,000,000		
m-Xylene	108-38-3	not available									
o-xylene	95-47-6	not available									
p-xylene		not available									
(1) Source of RfDs is EPA's I	RIS databas	e except for 1	,1,1, TCE w	hich is from	HEAST.						
(2) Value calculated using eq	uation 740-1	and default a	ssumptions	in that equa	ation.						
(3) Applicable, relevant and a	ppropriate re	equirement. S	Source for P	CBs is 40 C	FR Part 76	61.61(a)(4)(	(i)(A).				
(4) ARAR divided by Method	B value in co	olumn K. Bolo	ded values i	ndicate ARA	R exceeds	MTCA rec	quirement t	hat HQ not ex	ceed 1.0.		
											ĺ

### Table 5: Method C Industrial Calculations for Carcinogens for Soil Ingestion plus Dermal Contact

Risk CalculationsCarcino	yenic Enecis (	Ji Juli Ilige:	SHOLL + DELL	nai Goniac	·					<del>                                     </del>		-			<del>                                     </del>	+
		Risk	Ava Body	Averaging	Exposure	Exposure	Soil	G.I. Abs.	Oral	Unit Conv.	Surface	Adherence	Dermal	G.I. Conv.	Dermal	Method C (3
Parameter	CAS No.	11.011	Weight	Time	Frequency			Fraction	CPF (1)	Factor	Area	Factor	Abs. Fraction	Factor	CPF (2)	Carcinoger
		(unitless)	(kg)	(days)	(days/yr)	(yrs)	(mg/day)	(unitless)	(kg-day/mg)	(ug/mg)	(cm ² )	(mg/cm ² -day)	(unitless)	(unitless)		(mg/kg)
Arsenic	7440-38-2	0.00001	70	27,375	250	20	50	1.0	1.5	1,000,000	2,500	0.2	0.03	0.95	1.6	38.8
Benzene	71-43-2	0.00001	70	27,375	250	20	50	1.0	0.029	1,000,000	2,500	0.2	0.0005	0.80	0.036	2,62
Cadmium	7440-43-9								not available							
Γ Chromium	7440-47-3															
Chromium III	16065-83-1								not available							
Chromium VI	18540-29-9								not available							
DDT	50-29-3	0.00001	70	27,375	250	20	50	1.0	0.34	1,000,000	2,500	0.2	0.03	0.70	0.49	157.8
Ethylbenzene	100-41-4			,					not available		,					
Ethylene dibromide (EDB)	106-93-4	0.00001	70	27,375	250	20	50	1.0	85	1,000,000	2,500	0.2	0.03	0.80	106	0.656
Lead	7439-92-1								not available		_,,,,,,	3.2				
Lindane	58-89-9	0.00001	70	27,375	250	20	50	1.0	1.3	1,000,000	2,500	0.2	0.04	0.50	2.6	32.76
Methylene chloride	75-09-2	0.00001	70	27,375	250	20	50	1.0	0.0075	1,000,000	2,500	0.2	0.0005	0.80	0.0094	10,157
Mercury (inorganic)	7439-97-6								not available							
MTBE	1634-04-4								not available							
Naphthalene	91-20-3								not available							
•									not available							
cPAH Mixtures	na															
Benzo[a]anthracene	56-55-3								not available							
Benzo[b]fluoranthene Benzo[k]fluoranthene	205-99-2 207-08-9								not available not available							
Benzo[a]pyrene	50-32-8	0.00001	70	27,375	250	20	50	1.0	7.3	1,000,000	2,500	0.2	0.13	0.89	8.2	4.27
Chrysene	218-01-9	0.00001	70	21,010	250	20	30	1.0	not available		2,000	0.2	0.10	0.00	0.2	7.27
Dibenzo[a,h]anthracene	53-70-3								not available							
Ideno[1,2,3-cd]pyrene	207-08-9								not available							
(1) Source of Cancer Potent	y Factor is the	oral slope fa	ctors fromEl	PA's IRIS da	atabase, ex	cept for Line	dane which	is from HE	AST.							
(2) Dermal CPF = Oral CPF				factor is che	emical spec	ific. See ed	uation 745-	5 for defaul	ts and 1/25/99	memo for c	hemical spe	ecific factors us	ed here.			
(3) Calculated using equatio	n 745-5 and def	ault assump	tions.													
																1
	-															-
																1
																-
										-						

### Table 5: Method C Industrial Calculations for Carcinogens for Soil Ingestion plus Dermal Contact

Risk CalculationsCarcino	genic Effects o	of Soil Inges	stion + Deri	nal Contac	t	·	·						<u>-</u>			
		Risk	Ava Body	Averaging	Exposure	Exposure	Soil	G.I. Abs.	Oral	Unit Conv.	Surface	Adherence	Dermal	G.I. Conv.	Dermal	Method C (3
Parameter	CAS No.	TOOL	Weight		Frequency		Ing. Rate	Fraction	CPF (1)	Factor	Area	Factor	Abs. Fraction	Factor	CPF (2)	Carcinogen
- arameter	07101101	(unitless)	(kg)	(days)	(days/yr)	(yrs)	(mg/day)		(kg-day/mg)	(ug/mg)		(mg/cm ² -day)	(unitless)	(unitless)	(kg-day/mg)	(mg/kg)
PCB mixtures	1336-36-3		1													
High Risk & Persistence		0.00001	70	27,375	250	20	50	1.0	2.0	1,000,000	2,500	0.2	0.14	0.81	2.5	14.05
Low Risk & Persistence		0.00001	70	27,375	250	20	50	1.0	0.4	1,000,000	2,500	0.2	0.14	0.81	0.49	70.2
Lowest Risk & Persistence		0.00001	70	27,375	250	20	50	1.0	0.07	1,000,000	2,500	0.2	0.14	0.81	0.0864	401
Aroclor 1016	12674-11-2								not available							
Arochlor 1248	12672-29-6								not available							
Arochlor 1254	11097-69-1								not available					0.81		
Arochlor 1260									not available							
Tetrachloroethylene (PCE)	127-18-4	0.00001	70	27,375	250	20	50	1.0	0.051	1,000,000	2,500	0.2	0.03	0.80	0.064	1,093
Toluene	108-88-3								not available							
1,1,1 Trichloroethane	71-55-6								not available							
Trichloroethylene	79-01-6	0.00001	70	27,375	250	20	50	1.0	0.011	1,000,000	2,500	0.2	0.03	0.80	0.014	5,068
Xylenes	1330-20-7								not available							
m-Xylene	108-38-3								not available							
o-xylene	95-47-6								not available							
p-xylene									not available							
																<u> </u>
																<del>                                     </del>
(1) Source of Cancer Potency	Factor is the o	oral slope fac	ctors from E	PA's IRIS d	atabase, ex	cept for tetr	achloroethy	lene, trichlo	orothylene and	vinyl chlorid	e which are	from HEAST.				
(2) Dermal CPF = Oral CPF/	GI abs convers	ion factor. 7	The GI abs.	factor is che	emical speci	fic. See eq	uation 745-	5 for defaul	ts and 1/25/99	memo for cl	hemical spe	cific factors us	ed here.			
(3) Calculated using equation					·											

### Table 6: Method C Industrial Calculations for Noncarcinogens for Soil Ingestion plus Dermal Contact

Risk CalculationsNoncar																
		Hazard	Avg. Body	Averaging	Exposure	Exposure	Oral Ref.	Soil	G.I. Abs.	Unit Conv.	G.I. Conv.	Dermal	Surface	Adherence	Dermal Abs.	Method C
Parameter	CAS No.	Index	Weight	Time	Frequency	Duration	Dose (1)	Ing. Rate	Fraction	Factor	Factor	Rfd (2)	Area	Factor	Fraction	Noncarc(2)
		(unitless)	(kg)	(days)	(days/yr)	(years)	(mg/kg-day)	(mg/day)	(unitless)	(mg/kg)	(unitless)	(mg/kg-day)	(cm ² )	(mg/cm ² )	(unitless)	(mg/kg)
Arsenic	7440-38-2	1	70	7,300	250	20	0.0003	50	1	1,000,000	0.95	0.00029	2,500	0.2	0.03	46
Benzene	71-43-2	1	70	7,300	250	20	0.003	50	1	1,000,000	0.80	0.0024	2,500	0.2	0.0005	
Cadmium	7440-43-9	1	70	7,300	250	20	0.001	50	1	1,000,000	0.025	0.000025	2,500	0.2	0.001	1,460
T Chromium	7440-47-3						not available									
Chromium III	16065-83-1	1	70	7,300	250	20	1.5	50	1	1,000,000	0.013	0.020	2,500	0.2	0.01	352,726
Chromium VI	18540-29-9	1	70	7,300	250	20	0.003	50	1	1,000,000	0.025	0.000075	2,500	0.2	0.01	1,226
DDT	50-29-3	1	70	7,300	250	20	0.0005	50	1	1,000,000	0.70	0.00035	2,500	0.2	0.03	715
Ethylbenzene	100-41-4	1	70	7,300	250	20	0.1	50	1	1,000,000	0.80	0.080	2,500	0.2	0.03	148,65
•																
Ethylene dibromide (EDB)	106-93-4						not available									
Lead	7439-92-1						not available									
Lindane	58-89-9	1	70	7,300	250	20	0.0003	50	1	1,000,000	0.50	0.00015	2,500	0.2	0.04	34
Methylene chloride	75-09-2	1	70	7,300	250	20	0.06	50	1	1,000,000	0.80	0.048	2,500	0.2	0.0005	121,878
Mercury (inorganic)	7439-97-6	11	70	7,300	250	20	0.0003	50	1	1,000,000	0.07	0.000021	2,500	0.2	0.01	252
MTBE	1634-04-4						not available									
Naphthalene	91-20-3	1	70	7,300	250	20	0.02	50	1	1,000,000	0.89	0.018	2,500	0.2	0.13	16,613
cPAH Mixtures	na						not available									
Benzo[a]anthracene	56-55-3						not available									
Benzo[b]fluoranthene	205-99-2						not available									
Benzo[k]fluoranthene	207-08-9						not available									
Benzo[a]pyrene	50-32-8						not available									
Chrysene	218-01-9						not available									
Dibenzo[a,h]anthracene	53-70-3						not available									
Ideno[1,2,3-cd]pyrene	207-08-9						not available									
(1) Source of oral RfDs is E (2) Dermal RfD = Oral RfD 3							ti 745 4	for defection	d 4/05/00		ninal annaitia	fa ataua a l la aus				
(3) Calculated using equation				ads. factor is	chemicai spe	ecilic. See	equation 745-4	ior delaults a	and 1/25/99 ff	nemo for cher	nicai specilic	ractors used nere	a.			
(-,																
	1		1	1	I	l	l .	1	l .	1	1		1	1		1

Risk CalculationsNoncar	cinogenic E	ffects of So	oil Ingestion	1 + Dermal C	ontact											
		Hazard	Avg. Body	Averaging	Exposure	Exposure	Oral Ref.	Soil	G.I. Abs.	Unit Conv.	G.I. Conv.	Dermal	Surface	Adherence	Dermal Abs.	Method C
Parameter	CAS No.	Index	Weight	Time	Frequency	Duration	Dose (1)	Ing. Rate	Fraction	Factor	Factor	Rfd (2)	Area	Factor	Fraction	Noncarc(2)
		(unitless)	(kg)	(days)	(unitless)	(years)	(mg/kg-day)	(mg/day)	(unitless)	(mg/kg)	(unitless)	(mg/kg-day)	(mg/cm ² )	(mg/cm ² )	(unitless)	(mg/kg)
PCB mixtures	1336-36-3		I			ı	not available	l		I			l	1		
High Risk & Persistence	1336-36-3						not available									
Low Risk & Persistence	-						not available									
Lowest Risk & Persistence							not available									
Aroclor 1016	12674-11-2	1	70	7.300	250	20	0.00007	50	1	1.000.000	0.81	0.000057	2.500	0.2	0.14	52.
Arochlor 1248	12672-29-6		7.0	7,000	200	20	not available	- 00		1,000,000	0.01	0.000001	2,000	0.2	0.14	<u> </u>
Arochlor 1254	11097-69-1	1	70	7.300	250	20	0.00002	50	1	1.000.000	0.81	0.000016	2.500	0.2	0.14	15.0
Arochlor 1260				.,,,,,			not available			.,,	0.0.		_,,,,,,	7		
Tetrachloroethylene (PCE)	127-18-4	1	70	7.300	250	20	0.01	50	1	1,000,000	0.80	0.0080	2.500	0.2	0.03	14,86
Toluene	108-88-3	1	70	7,300	250	20	0.2	50	1	1,000,000	0.80	0.16	2,500	0.2	0.03	297,30
1.1.1 Trichloroethane	71-55-6	1	70	7.300	250	20	0.9	50	1	1.000.000	0.80	0.72	2.500	0.2	0.0005	1.828.17
Trichloroethylene	79-01-6		70	7,300	250	20	not available	30		1,000,000	0.00	0.72	2,300	0.2	0.0003	1,020,17
Xvlenes	1330-20-7	1	70	7.300	250	20	2.0	50	1	1.000.000	0.80	1.6	2.500	0.2	0.03	2,973,09
m-Xylene	108-38-3		7.0	7,000	200	20	not available	- 00		1,000,000	0.00	1.0	2,000	0.2	0.00	2,010,00
o-xylene	95-47-6						not available									
p-xylene							not available									
																<del>                                     </del>
(1) Source of oral RfDs is El	1		L			L										

### Table 7: 3-Phase Model Assumptions and Results

3-Phase Model Results												
		Gd H₂O								Dilution	Soil	
	CAS No.	C/U Level	Bulk Density	Soil Water	Soil Air	H'	Koc	foc	Kd	Factor	C/U Level	
	07101101	(mg/l) (1)	(g/cc) (2)	(cc/cc) (2)	(cc/cc) (2)	(cc/cc) (3)	(ml/g) (3)	(%) (4)	(cc/g) (5)	(dimensionless)	(mg/kg) (6)	
Arsenic	7440-38-2	0.005	1.5	0.3	0.13	0	-	-	29	20	2.92	
Benzene	71-43-2	0.005	1.5	0.3	0.13	0.228	61.7	0.1%	0.062	20	0.028	
Cadmium	7440-43-9	0.005	1.5	0.3	0.13	0	-	-	6.7	20	0.69	
Chromium (total)	7440-47-3											
Chromium VI	18540-29-9	0.05	1.5	0.3	0.13	0	-	-	19	20	19	
Chromium III	16065-83-1	0.10	1.5	0.3	0.13	0	-	-	1000	20	2000	
DDT	50-29-3	0.0003	1.5	0.3	0.13	0.000332	386,977	0.1%	387	20	2.32	
Ethyl Benzene	100-41-4	0.7	1.5	0.3	0.13	0.323	204	0.1%	0.204	20	6.05	
Ethylene dibromide (EDB)	106-93-4	0.00001	1.5	0.3	0.13	0.0336	66	0.1%	0.066	20	0.000054	
Lead	7439-92-1	0.015	1.5	0.3	0.13	0	-	-	10000	20	3000	
Lindane	58-89-9	0.0002	1.5	0.3	0.13	0.000574	1,352	0.1%	1.4	20	0.0062	
Methylene Chloride	75-09-2	0.005	1.5	0.3	0.13	0.0898	10	0.1%	0.010	20	0.022	
Mercury (inorganic)	7439-97-6	0.002	1.5	0.3	0.13	0.467	-	-	52	20	2.09	
MTBE	1634-04-4	0.02	1.5	0.3	0.13	0.018	11	0.1%	0.011	20	0.085	
Naphthalene	91-20-3	0.16	1.5	0.3	0.13	0.0198	1,191	0.1%	1.191	20	4.46	
cPAH Mistures	na											
Benzo[a]anthracene	56-55-3	0.000012	1.5	0.3	0.13	0.000137	357,537	0.1%	358	20	0.086	
Benzo[b]fluoranthene	205-99-2	0.000012	1.5	0.3	0.13	0.00455	1,230,000	0.1%	1,230	20	0.30	
Benzo[k]fluoranthene	207-08-9	0.000012 0.000012	1.5	0.3	0.13	0.000034 0.0000463	1,230,000 968,774	0.1%	1,230 969	20	0.30	
Benzo[a]pryene Chrysene	50-32-8 218-01-9	0.000012	1.5 1.5	0.3	0.13 0.13	0.0000463	398,000	0.1% 0.1%	398	20	0.23	
Dibenzo[a,h]anthracene	53-70-3	0.000012	1.5	0.3	0.13	6.03E-07	1,789,101	0.1%	1,789	20	0.43	
Indeno[1,2,3-cd]pyrene	207-08-9	0.000012	1.5	0.3	0.13	0.0000656	3,470,000	0.1%	3470.00	20	0.83	
-												
											1	
							-					

### **Table 7: 3-Phase Model Assumptions and Results**

3-Phase Model Results												
		Gd H₂O								Dilution	Soil	
	CAS No.	C/U Level	Bulk Density	Soil Water	Soil Air	H'	Koc	foc	Kd	Factor	C/U Level	
	0/10/110.	(mg/l) (1)	(g/cc) (2)		(cc/cc) (2)		(ml/g) (3)	(%) (4)	(cc/g) (5)	(dimensionless)	(mg/kg) (6)	
	-	(1119/1) (1)	(9/00) (2)	(00/00) (2)	(00/00) (2)	(00/00) (0)	(1111/9) (0)	(70) (1)	(00/9) (0)	(dirriorioloriiloso)	(mg/kg) (o)	1
PCB Mixtures	1336-36-3											
Arochlor 1016	12674-11-2		1.5	0.3	0.13	0.119	107,285	0.1%	107	20	0.21	
Arochlor 1260		0.0001	1.5	0.3	0.13	0.189	822,422	0.1%	822	20	1.65	
Tetrachlorothylene (PCE)	127-18-4	0.005	1.5	0.3	0.13	0.754	265	0.1%	0.265	20	0.053	
Toluene	108-88-3	1.0	1.5	0.3	0.13	0.272	140	0.1%	0.140	20	7.27	
1,1,1 Trichlorothane	71-55-6	0.2	1.5	0.3	0.13	0.705	135	0.1%	0.135	20	1.58	
Trichlorocthylene	79-01-6	0.005	1.5	0.3	0.13	0.422	94	0.1%	0.094	20	0.033	
Xylenes	1330-20-7	1.0	1.5	0.3	0.13	0.279	233	0.1%	0.233	20	9.14	
m-xylene	108-38-3	1.0	1.5	0.3	0.13	0.301	196	0.1%	0.196	20	8.44	1
o-xylene	95-47-6	1.0	1.5	0.3	0.13	0.213	241	0.1%	0.241	20	9.19	1
p-xylene	33 47 0	1.0	1.5	0.3	0.13	0.213	311	0.1%	0.241	20	10.76	+
p Aylorio	1	1.0	1.0	0.0	0.10	0.017	311	0.170	0.011	20	10.70	+
	1											+
	1											+
(1) Ground water cleanup I	avalueed for	calculation E	rom proposed	table 720 1	eveent for C	r III usad 0.1	ma/Land for D	NHs used Meth	and B value for l	P(a)P		
If the Method A ground									lou b value loi i	D(a)1 .		
(2) From equation 747-1.												
(2) From equation 747-1. (3) Source: Soil Screening												
EDB values from ATSD				EIII. EPA/54	+U/K-95/12D	. May, 1996	. Exceptions are	<del>.</del>				-
MTBE from USGS final				200)								-
Arochlor values for Her					aiaal Daafila	(Dan 1000)	. Augustau 1/22 f	FDA 400/				-
Values for total xylenes						iposition data	a from TPH Crit	eriai vvorking (	-roupvolume	2 (May 1998).		
That is: m = 51% of tot						. 0						
H' for all metals except									1 407 "			
DDT value for Koc base					idance is us	ed, Koc = 67	7,934 and soil o	leanup level e	quals 4.07 mg/l	kg.		
(4) Based on review of data												
(5) From equation 747-2 fo												
(6) Calculated using equati	ion 747-1 (3-p	phase model) v	vith model defa	aults (as sho	wn in this ta	ble) and grou	und water clean	up level show	n in this table.			
												1
												<b>_</b>
												1
												1
												1
												1
												1
		·										
		-					-					1

### Table 7: 3-Phase Model Assumptions and Results

3-Phase Model Results												
		Pore Water		NAPL		Pore Water		Vapor		Soil		Sum
	CAS No.	Concentration	Solubility	in	Csat	Concentration	Water Mass	Concentration	Vapor Mass	Concentration	Soil Mass	Mass
		(mg/l) (7)	(mg/l) (3)	Soil? (8)	(mg/kg) (9)	(mg/l) (7)	(mg/kg) (10)	(mg/m ³ ) (11)	(mg/kg) (12)	(mg/kg) (13)	(mg/kg) (14)	(mg/kg) (15)
Arsenic	7440-38-2	-	-	n/a	-	0.10	0.020	-	-	2.90	2.90	2.92
Benzene	71-43-2	0.10	1,750	No	493	0.10	0.020	22.8	0.0020	0.0062	0.0062	0.028
Cadmium	7440-43-9	0.10	-	n/a	-	0.10	0.020	-	-	0.67	0.67	0.69
Chromium (total)	7440-47-3											
Chromium VI	18540-29-9		-	n/a	-	1.0	0.20		-	19	19	19
Chromium III	16065-83-1	2.0	-	n/a	-	2.0	0.40	-	-	2000	2,000	2000
DDT	50-29-3	0.0060	0.0250	No	10	0.0060	0.0012	0.0020	1.73E-07	2.32	2.32	2.32
Ethyl Benzene	100-41-4	14	169	No	73	14	2.8	4522	0.39	2.86	2.86	6.05
Ethylene dibromide (EDB)	106-93-4	0.00020	4,000	No	1,076	0.00020	0.000040	0.0067	5.82E-07	0.000013	0.000013	0.000054
Lead	7439-92-1	0.30	-	n/a	-	0.30	0.060	1	-	3000	3000	3000
Lindane	58-89-9	0.0040	6.8	No	11	0.0040	0.00080	0.0023	1.99E-07	0.0054	0.0054	0.006
Methylene Chloride	75-09-2	0.0040	13,000	No	2,831	0.0040	0.0000	9.0	0.00078	0.0034	0.0034	0.000
					,							
Mercury (inorganic)	7439-97-6	0.040		n/a	-	0.040	0.008	19	0.0016	2.08	2.08	2.09
MTBE	1634-04-4	0.40	50,000	No	10,628	0.40	0.080	7.2	0.00062	0.0044	0.0044	0.085
Naphthalene	91-20-3	3.2	31	No	43	3.2	0.64	63	0.0055	3.81	3.81	4.46
cPAH Mistures	na											
Benzo[a]anthracene	56-55-3	0.00024	0.0094	No	3.4	0.00024	0.000048	3.29E-05	2.85E-09	0.09	0.086	0.09
Benzo[b]fluoranthene	205-99-2	0.00024	0.0015	No	1.8	0.00024	0.000048	1.09E-03	9.46E-08	0.30	0.30	0.30
Benzo[k]fluoranthene	207-08-9	0.00024	8000.0	No	1.0	0.00024	0.000048	8.16E-06	7.07E-10	0.30	0.30	0.30
Benzo[a]pryene	50-32-8	0.00024	0.00162	No	1.6	0.00024	0.000048	1.11E-05	9.63E-10	0.23	0.23	0.23
Chrysene	218-01-9	0.00024	0.0016	No	0.64	0.00024	0.000048	9.31E-04	8.07E-08	0.10	0.096	0.10
Dibenzo[a,h]anthracene	53-70-3	0.00024	0.00249	No	4.5	0.00024	0.000048	1.45E-07	1.25E-11	0.43	0.43	0.43
Indeno[1,2,3-cd]pyrene	207-08-9	0.00024	0.000022	Yes	0.076	0.00024	0.000048	1.57E-05	1.36E-09	0.83	0.83	0.83

		7	Table 7:	3-Phase	Model A	Assumption	s and Re	sults				
										l l		
	Pore Water		NAPL			Pore Water		Vapor		Soil		Sum
CAS No.	Concentration	Solubility	in	Csat		Concentration	Water Mass	Concentration	Vapor Mass	Concentration	Soil Mass	Mass
	(mg/l) (7)	(mg/l) (3)	Soil? (8)	(mg/kg) (9)		(mg/l) (7)	(mg/kg) (10)	(mg/m ³ ) (11)	(mg/kg) (12)	(mg/kg) (13)	(mg/kg) (14)	(mg/kg) (15
1336-36-3												T
12674-11-2	0.0020	0.42	No	45		0.0020	0.00040	0.24	2.06E-05	0.21	0.21	0.21
	0.0020	0.08	No	66		0.0020	0.00040	0.38	3.28E-05	1.64	1.64	1.65
127-18-4	0.10	200	No	106		0.10	0.020	75	0.0065	0.0265	0.0265	0.053
108-88-3	20	526	No	191		20	4.0	5440	0.47	2.80	2.80	7.3
71-55-6	4.0	1,330	No	527		4.0	0.80	2820	0.24	0.54	0.54	1.58
79-01-6	0.10	1,100	No	364		0.10	0.020	42	0.0037	0.0094	0.0094	0.033
1330-20-7	20	171	No	78		20	4.0	5580	0.48	4.66	4.66	9.1
108-38-3	20	161	No	68		20	4.0	6020	0.52	3.92	3.92	8.4
95-47-6	20	178	No	82		20	4.0	4260	0.37	4.82	4.82	9.2
	20	185	No	100		20	4.0	6280	0.54	6.22	6.22	10.8
												+
n = ground v	vater cleanup le	vel X dilution	factor									
il if the pore	water concentra	tion exceeds	the solubilit	y limit.								
ration above	which there is I	NAPL in the s	oil. It is calc	ulated by sub	stituting the	solubility limit for	or the [ground	water cleanup le	evel X DF] in equa	tion 747-1.		
					the mass of	contaminant in t	he water phas	e.				
			density. Th	is is the mas	s of contam	nant in the vapo	r phase.					
						of contaminant in	the soil phase	Э.				
ss + vapor m	nass + soil mass	. This value	equals the s	oil cleanup le	evel.							
	1336-36-3 12674-11-2 127-18-4 108-88-3 71-55-6 79-01-6 1330-20-7 108-38-3 95-47-6  iii fi the pore tration above atter concent Pore water concent ration or water core water concentration or water core water core concentration.	CAS No. Concentration (mg/l) (7)  1336-36-3  12674-11-2	Pore Water  CAS No. Concentration Solubility  (mg/l) (7) (mg/l) (3)  1336-36-3 12674-11-2 0.0020 0.42 0.0020 0.08  127-18-4 0.10 200 108-88-3 20 526 71-55-6 4.0 1,330 79-01-6 0.10 1,100 1330-20-7 20 171 108-38-3 20 161 95-47-6 20 178 20 185  In = ground water cleanup level X dilution ill if the pore water concentration exceeds tration above which there is NAPL in the sater concentration X soil water fraction] / soncentration X soil air fraction] / soll bulk ore water concentration X Kd x soil bulk density] / er concentration X Kd x soil bulk density] /	Pore Water	Pore Water	Pore Water	Pore Water	Pore Water   CAS No.   Concentration   Solubility   in   Csat   Concentration   Water Mass   (mg/l) (7)   (mg/l) (3)   Soil? (8)   (mg/kg) (9)   (mg/l) (7)   (mg/kg) (10)     1336-36-3	Pore Water   NAPL   Pore Water   Vapor	Pore Water   NAPL   Pore Water   Vapor	Pore Water   NAPL   Pore Water   Cast   Concentration   Water Mass   Concentration   Cast   Concentration   Water Mass   Concentration   Concentration   Cast   C	Pore Water   CAS No.   Concentration   Solubility   in   Csat   Concentration   Water Mass   Concentration   Concentration

### Table 8: 4-Phase Model Results using Fresh ARCO Gasoline

# Solid: 46.1% Air: 33.0% Water: 20.9% NAPL: NONE 100.0%

	Equilibrium Composition	Protective Soil	Predicted G.W
	%	ppm	ug/l
<u>Aliphatics</u>	ARCO 1		
EC >5-6	29.93%	0.27	3.49
EC >6-8	15.31%	0.14	1
EC >8-10	3.77%	0.03	0.0
EC >10-12	2.56%	0.02	0.00
EC >12-16		0.00	0.00
EC >16-21		0.00	0.00
<u>Aromatics</u>		0.00	
Benzene	3.67%	0.033	5.86
Toluene	14.62%	0.13	18
Ethylbenzene	2.73%	0.02	3
Xylenes	13.45%	0.12	13
EC >8-10	4.15%	0.04	1
EC >10-12	7.47%	0.07	1
EC >12-16	0.0191	0.02	0
EC >16-21		0.00	0
EC >21-35		0.00	0
Naphthalene	0.43%	0.00	0
MTBE		0.00	0
Total	100.00%	0.90	47

## 21% 0% 46%

Soil - Mass Distribution

Solid:
Air:
Water:
NAPL:

Total soil porosity: default is 0.43	n	0.430	Unitless
Volumetric water content: default is 0.3	Qw	0.300	Unitless
Initial volumetric air content: default is 0.13	Qa	0.130	Unitless
Soil bulk density measured: default is 1.5	rb	1.500	kg/l
*or, use soil bulk density computed @solid density=2.65kg	g/l:	1.811	kg/l
Fraction Organic Carbon: default is 0.001	foc	0.0010	Unitless
Dilution Factor: default is 20	DF	20.0	Unitless

Soil Concentration:	0.90
---------------------	------

Predicted Ground Water TPH (ug/l:	47

( )	
HI @ Predicted G.W. Concentration:	0.27

Volumetric NAPL Content, QNAPL:

NAPL Saturation (%), QNAPL/n:

Type of model used for computation:

Computation completed?

NAPL phase is not existing!

N/A

3-Phase Model

Yes!

TPH Distribution @ 4-phase in soil pore system:

Total Mass distributed in Water Phase: 20.89% in Solid: 46.11%

Total Mass distributed in Air Phase: 33.00% in NAPL

in NAPL: NONE

### Soil Concentration = 0.90

Gasoline composition from 9/3/98 neat product analysis conducted by Northcreek Analytical, Inc under contract to Ecology.

This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff.

For this particular composition, the allowable soil concentration is controlled by the predicted concentration of benzene (5.86 ug/l) in the ground water.

### Table 9: 4-Phase Model Results using ARCO #5 (ARCO composition closest to 0.1% benzene)

Solid:	77.2%
Air:	11.8%
Water:	11.1%
NAPL:	NONE
	100.0%

	C accellibrations	Drete etive	Predicted G.W.
	Equilibrium	Protective Soil	G.W.
	Composition %		/1
Alliebert		ppm	ug/l
<u>Aliphatics</u>	ARCO 5		
EC >5-6	1.36%	0.38	4.93
EC >6-8	13.4%	3.74	22
EC >8-10	12.8%	3.59	4.6
EC >10-12	10.8%	3.02	0.58
EC >12-16		0.00	0.00
EC >16-21		0.00	0.00
<u>Aromatics</u>		0.00	
Benzene	0.066%	0.019	3.29
Toluene	2.8%	0.80	109
Ethylbenzene	1.8%	0.51	59
Xylenes	10.0%	2.81	308
EC >8-10	11.6%	3.26	89
EC >10-12	26.3%	7.35	135
EC >12-16	7.7%	2.16	21
EC >16-21		0.00	0
EC >21-35		0.00	0
Naphthalene	1.27%	0.35	17
MTBE		0.00	0
Total	100.00%	28.00	774



Total soil porosity: default is 0.43	n	0.430	Unitless
Volumetric water content: default is 0.3	Qw	0.300	Unitless
Initial volumetric air content: default is 0.13	Qa	0.130	Unitless
Soil bulk density measured: default is 1.5	rb	1.500	kg/l
*or, use soil bulk density computed @solid density=2.65kg/l:		1.811	kg/l
Fraction Organic Carbon: default is 0.001	foc	0.0010	Unitless
Dilution Factor: default is 20	DF	20.0	Unitless

Soil Concentration: 28.00

Predicted Ground Water TPH (ug/l: 774
HI @ Predicted G.W. Concentration: 1.01

Volumetric NAPL Content, QNAPL:

NAPL Saturation (%), QNAPL/n:

Type of model used for computation:

Computation completed?

TPH Distribution @ 4-phase in soil pore system:

NAPL phase is not existing!

N/A

3-Phase Model

Yes!

Total Mass distributed in Water Phase: 11.05% in Solid: 77.18%

Total Mass distributed in Air Phase: 11.76% in NAPL: NONE

### Soil Concentration = 28.00

Gasoline composition is fresh product weathered to approximately 0.1% benzene, simulated by removal of mass in dissolved and vapor phases by successive model runs. This benzene composition is typical of soil benzene concentrations found in soils at gasoline contaminated sites in WA State.

This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff. For this particular composition, the allowable soil concentration is controlled by the predicted hazard index of the gasoline mixture in the ground water.

### Table 10: 4-Phase Model Results using Fresh BP Gasoline

#### Solid: 52.9% Air: 32.4% Water: 14.8% NAPL: NONE 100.0%

		Protecti	
	Equilibrium	ve	Predicted G.W.
	Composition	Soil	
	%	ppm	ug/l
<u>Aliphatics</u>	Fresh BP		
EC >5-6	28.48%	0.28	3.69
EC >6-8	17.2%	0.17	1
EC >8-10	4.6%	0.05	0.1
EC >10-12	5.5%	0.06	0.01
EC >12-16		0.00	0.00
EC >16-21		0.00	0.00
<u>Aromatics</u>		0.00	
Benzene	2.9%	0.029	5.16
Toluene	7.7%	0.08	11
Ethylbenzene	1.7%	0.02	2
Xylenes	8.9%	0.09	10
EC >8-10	5.5%	0.06	2
EC >10-12	9.2%	0.09	2
EC >12-16	6.6%	0.07	1
EC >16-21	0.0%	0.00	0
EC >21-35	0.0%	0.00	0
Naphthalene	1.6%	0.02	1
MTBE	0.0%	0.00	0
Total	100.0%	1.00	37

### 0% 15% Solid: ■ Air: □ Water: □NAPL:

Soil - Mass Distribution

Total soil porosity: default is 0.43	n
Volumetric water content: default is 0.3	Qw
Initial volumetric air content: default is 0.13	Qa
Soil bulk density measured: default is 1.5	rb
*or, use soil bulk density computed @solid density=2.65kg/l:	
Fraction Organic Carbon: default is 0.001	foc
Dilution Factor: default is 20	DF
Soil Concentration:	1.00
Predicted Ground Water TPH (ug/l:	37
HI @ Predicted G.W. Concentration:	0.24

Volumetric NAPL Content, QNAPL :	NAPL phase is not existing!
NAPL Saturation (%), QNAPL/n:	N/A
Type of model used for computation:	3-Phase Model
Computation completed?	Yes!
TPH Distribution @ 4-phase in soil pore system:	

Total Mass distributed in Water Phase: 14.75% in Solid: 52.87%

0.430 Unitless 0.300 Unitless 0.130 Unitless

kg/l

kg/l 0.0010 Unitless 20.0

Unitless

1.500

1.811

Total Mass distributed in Air Phase: 32.38% in NAPL: NONE

### Soil Concentration = 1.00

Gasoline composition from 9/3/98 neat product analysis conducted by Northcreek Analytical, Inc under contract to Ecology.

This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff. For this particular composition, the allowable soil concentration is controlled by the predicted concentration of benzene (5.16 ug/l) in the ground water.

Table 11: 4-Phase Model Results for BP #4 (BP composition closest to 0.1% benzene)

Solid:	78.7%
Air:	12.4%
Water:	8.9%
NAPL:	NONE
	100.0%

	Equilibrium Composition %	Protective Soil ppm	Predicted G.W.
<u>Aliphatics</u>	BP #4		
EC >5-6	2.640%	0.58	7.53
EC >6-8	14.131%	3.11	18
EC >8-10	9.935%	2.19	2.8
EC >10-12	13.808%	3.04	0.58
EC >12-16		0.00	0.00
EC >16-21		0.00	0.00
<u>Aromatics</u>			
Benzene	0.127%	0.028	4.95
Toluene	2.003%	0.44	61
Ethylbenzene	1.135%	0.25	29
Xylenes	6.427%	1.41	155
EC >8-10	10.248%	2.25	62
EC >10-12	20.242%	4.45	82
EC >12-16	16.106%	3.54	34
EC >16-21	0.000%	0.00	0
EC >21-35	0.000%	0.00	0
Naphthalene	3.198%	0.70	34
MTBE	0.000%	0.00	0
			0
Total	100.000%	22.00	490

### Soil - Mass Distribution



Total soil porosity: default is 0.43	n	0.430	Unitless
Volumetric water content: default is 0.3	Qw	0.300	Unitless
Initial volumetric air content: default is 0.13	Qa	0.130	Unitless
Soil bulk density measured: default is 1.5	rb	1.500	kg/l
*or, use soil bulk density computed @solid density=2.65kg/l:		1.811	kg/l
Fraction Organic Carbon: default is 0.001	foc	0.0010	Unitless
Dilution Factor: default is 20	DF	20.0	Unitless

Soil Concentration: 22.00

Predicted Ground Water TPH (ug/l: 490 HI @ Predicted G.W. Concentration: 0.92

Volumetric NAPL Content, QNAPL:

NAPL Saturation (%), QNAPL/n:

Type of model used for computation:

Computation completed?

NAPL phase is not existing!

N/A

3-Phase Model 78.72%

Yes!

TPH Distribution @ 4-phase in soil pore system:

Total Mass distributed in Water Phase: 8.90% in Solid: NONE

Total Mass distributed in Air Phase: 12.37% in NAPL:

### Soil Concentration = 22.00

Gasoline composition is fresh product weathered to approximately 0.1% benzene, simulated by removal of mass in dissolved and vapor phases by successive model runs. This benzene composition is typical of soil benzene concentrations found in soils at gasoline contaminated sites in WA State.

This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff. For this particular composition, the allowable soil concentration is controlled by the predicted concentration of benzene (4.95 ug/l) in the ground water.

### Table 12: 4-Phase Model Results for BP #24 (least weathered composition with HI<1 at 100 PPM in the Soil)

Solid:	25.5%
Air:	0.6%
Water:	1.5%
NAPL:	72.4%
	100.0%

	Equilibrium Composition	Protective Soil ppm	Predicted G.W.
Aliphatics	BP #24	PP	ug/i
EC >5-6	0.0%	0.00	0.00
EC >6-8	0.1%	0.06	0.00
EC >8-10	10.5%	10.98	2.8
EC >10-12	31.4%	32.94	0.61
EC >12-16	0.0%	0.00	0.00
EC >16-21	0.0%	0.00	0.00
<u>Aromatics</u>		0.00	
Benzene	0.0%	0.000	0.00
Toluene	0.0%	0.00	0
Ethylbenzene	0.0%	0.00	0
Xylenes	0.0%	0.01	1
EC >8-10	3.7%	3.93	71
EC >10-12	21.2%	22.31	206
EC >12-16	31.3%	32.84	88
EC >16-21	0.0%	0.00	0
EC >21-35	0.0%	0.00	0
Naphthalene	1.8%	1.92	30
MTBE	0.0%	0.00	0
Total	100.0%	105.00	399





Total soil porosity: default is 0.43	n	0.430	Unitless
Volumetric water content: default is 0.3	Qw	0.300	Unitless
Initial volumetric air content: default is 0.13	Qa	0.130	Unitless
Soil bulk density measured: default is 1.5	rb	1.500	kg/l
*or, use soil bulk density computed @solid density=2.65kg/l:		1.811	kg/l
Fraction Organic Carbon: default is 0.001	foc	0.0010	Unitless
Dilution Factor: default is 20	DF	20.0	Unitless

Soil Concentration: 105.00

Predicted Ground Water TPH (ug/l: 399
HI @ Predicted G.W. Concentration: 1.00

Volumetric NAPL Content, QNAPL: 0.000

NAPL Saturation (%), QNAPL/n: 0.03%

Type of model used for computation: 4-Phase Model Computation completed? Yes!

TPH Distribution @ 4-phase in soil pore system:

Total Mass distributed in Water Phase: 1.52% in Solid: 25.49%

Total Mass distributed in Air Phase: 0.62% in NAPL: 72.37%

### Soil Concentration = 105.00

Gasoline composition is fresh product weathered until 100 PPM in the soil will pass, simulated by removal of mass in dissolved and vapor phases by successive model runs. This composition represents highly weathered gasoline with no detectable benzene in the soil.

This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff. For this particular composition, the allowable soil concentration is controlled by the predicted hazard index of the gasoline mixture in the ground water.